5 research outputs found

    Polymorphism of DNA mismatch repair genes in endometrial cancer

    No full text
    Endometrial cancer (EC) is the second most common malignancy associated with hereditary non-polyposis colorectal cancer (HNPCC) family. The development of HNPCC is associated with defects in DNA mismatch repair (MMR) pathway resulting in microsatellite instability (MSI). MSI is present in a greater number of EC than can be accounted for by inherited MMR mutations, therefore alternative mechanisms may underline defective MMR in EC, including polymorphic variation. Aim: We checked the association between EC occurrence and two polymorphisms of MMR genes: a 1032G>A (rs4987188) transition in the hMSH2 gene resulting in a Gly22Asp substitution and a –93G>A (rs1800734) transition in the promoter of the hMLH1 gene. Material and methods: These polymorphisms were genotyped in DNA from peripheral blood lymphocytes of 100 EC patients and 100 age-matched women by restriction fragment length polymorphism PCR. Results: A positive association (OR 4.18; 95% CI 2.23–7.84) was found for the G/A genotype of the –93G>A polymorphism of the hMLH1 gene and EC occurrence. On the ot­her hand, the A allele of this polymorphism was associated with decreased EC occurrence. The Gly/Gly genotype slightly increased the effect of the –93G>A-G/A genotype (OR 4.52; CI 2.41–8.49). Our results suggest that the –93G>A polymorphism of the hMLH1 gene singly and in combination with the Gly322Asp polymorphism of the hMSH2 gene may increase the risk of EC. Key Words: hMSH2, hMLH1, endometrial cancer, genetic polymorphism, MMR

    Genome-wide bidirectional CRISPR screens identify mucins as host factors modulating SARS-CoV-2 infection

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2–host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism

    POLYMORPHISM OF DNA MISMATCH REPAIR GENES IN ENDOMETRIAL CANCER

    No full text
    Endometrial cancer (EC) is the second most common malignancy associated with hereditary non-polyposis colorectal cancer (HNPCC) family. The development of HNPCC is associated with defects in DNA mismatch repair (MMR) pathway resulting in microsatellite instability (MSI). MSI is present in a greater number of EC than can be accounted for by inherited MMR mutations, therefore alternative mechanisms may underline defective MMR in EC, including polymorphic variation. Aim: We checked the association between EC occurrence and two polymorphisms of MMR genes: a 1032G>A (rs4987188) transition in the hMSH2 gene resulting in a Gly22Asp substitution and a –93G>A (rs1800734) transition in the promoter of the hMLH1 gene. Material and methods: These polymorphisms were genotyped in DNA from peripheral blood lymphocytes of 100 EC patients and 100 age-matched women by restriction fragment length polymorphism PCR. Results: A positive association (OR 4.18; 95% CI 2.23–7.84) was found for the G/A genotype of the –93G>A polymorphism of the hMLH1 gene and EC occurrence. On the ot­her hand, the A allele of this polymorphism was associated with decreased EC occurrence. The Gly/Gly genotype slightly increased the effect of the –93G>A-G/A genotype (OR 4.52; CI 2.41–8.49). Our results suggest that the –93G>A polymorphism of the hMLH1 gene singly and in combination with the Gly322Asp polymorphism of the hMSH2 gene may increase the risk of EC. Key Words: hMSH2, hMLH1, endometrial cancer, genetic polymorphism, MMR
    corecore