92 research outputs found
Dipole states in stable and unstable nuclei
A nuclear structure model based on linear response theory (i.e., Random Phase
Approximation) and which includes pairing correlations and anharmonicities
(coupling with collective vibrations), has been implemented in such a way that
it can be applied on the same footing to magic as well as open-shell nuclei. As
applications, we have chosen to study the dipole excitations both in
well-known, stable isotopes like Pb and Sn as well as in the
neutron-rich, unstable Sn nucleus, by addressing in the latter case the
question about the nature of the low-lying strength. Our results suggest that
the model is reliable and predicts in all cases low-lying strength of non
collective nature.Comment: 16 pages, 6 figures; submitted for publicatio
AEROBIC AND ANAEROBIC METABOLISM DURING LOCOMOTION WITH TWO DIFFERENT WHEELCHAIR TYPES
Wheelchair design is extremely important in order to improve efficiency of locomotion and reduce physical stress in subjects whose muscular and cardiopulmonary fitness are impaired. Purpose of this study was to evaluate the effect of different wheelchair design on the aerobic and anaerobic metabolism during locomotion at different speeds in paraplegic subjects. The experiments were carried out on a group of 5 male paraplegic subjects (25 ±3 years; body weight 65±7kg) during locomotion on a roller ergometer (Sopur, Ergotronic mod.) at 3-4 different speeds from 2 to 9 km/h. At each speed oxygen consumption and heart rate were determined after at least 6 min of exercise. Lactic acid (LA) venous blood concentration was evaluated before and at the 5th min of recovery and lactate production was calculated. The oxygen equivalent of LA was assumed to be 3.15ml O2 per kg body weight for an increase of blood LA of 1 mmol/L. For each subject the test was repeated using two different types of daily use active wheelchairs: type A., foldable, 13.95kg; type B, demountable, 13.35kg. The main difference in size was in the horizontal location of the wheel axle, in seat height and in handrim diameter. Results indicate that: a) oxygen consumption increased linearly with speed being 2050±350ml/min and 1780±270ml/min at 9km/h for wheelchair type A and B, respectively; b)lactic acid concentrations were significantly higher, at a given speed, while using wheelchair type A than B (at 9km/h; 7.4±1.5 mmol/l and 6.0±1.6 mmol/l, respectively),c) the total energy required , aerobic and anaerobic, increased linearly with speed and was 15-20% higher with wheelchair type A than B at all speeds; d) the energy cost of locomotion at a given speed was in the 15-25% range higher for wheelchair A than B; e) at corresponding oxygen uptake, heart rate and pulmonary ventilation were not different with the two wheelchair types. The main results of this study concern the large difference existing in the energy cost of locomotion and in the lactate production in the same subject when two different wheelchairs, even if apparently similar are used. In particular the much higher lactate production suggests that wheelchair design affects the limb and trunk movements in such a way that the metabolism of some muscle group requires a greater participation of anaerobic mechanism of energy supply, this leading to early onset of muscular fatigue. Further studies, in particular the combined biomechanical analysis of user and wheelchair during locomotion are required to increase the optimum fitting of wheelchair –user interface
Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances
The relativistic random-phase approximation (RRPA) plus phonon-coupling (PC)
model is applied in the analysis of E1 strength distributions in Pb and
Sn, for which data on pygmy dipole resonances (PDR) have recently been
reported. The covariant response theory is fully consistent: the effective
nuclear interaction NL3 is used both to determine the spectrum of
single-nucleon Dirac states, and as the residual interaction which determines
the collective phonon states in the relativistic RPA. It is shown that the
picture of the PDR as a resonant oscillation of the neutron skin against the
isospin saturated proton-neutron core, and with the corresponding RRPA state
characterized by a coherent superposition of many neutron particle-hole
configurations, remains essentially unchanged when particle-vibration coupling
is included. The effect of two-phonon admixtures is a weak fragmentation and a
small shift of PDR states to lower excitation energy. Even though the PDR
calculated in the extended model space of phonon configurations
contains sizeable two-phonon admixtures, it basically retains a one-phonon
character and its dynamics is not modified by the coupling to low-lying surface
vibrations.Comment: 17 pages, 3 figures, 4 table
Covariant response theory beyond RPA and its application
The covariant particle-vibration coupling model within the time blocking
approximation is employed to supplement the Relativistic Random Phase
Approximation (RRPA) with coupling to collective vibrations. The Bethe-Salpeter
equation in the particle-hole channel with an energy dependent residual
particle-hole (p-h) interaction is formulated and solved in the shell-model
Dirac basis as well as in the momentum space. The same set of the coupling
constants generates the Dirac-Hartree single-particle spectrum, the static part
of the residual p-h interaction and the particle-phonon coupling amplitudes.
This approach is applied to quantitative description of damping phenomenon in
even-even spherical nuclei with closed shells Pb and Sn. Since
the phonon coupling enriches the RRPA spectrum with a multitude of
phphonon states a noticeable fragmentation of giant monopole and
dipole resonances is obtained in the examined nuclei. The results are compared
with experimental data and with results of the non-relativistic approach.Comment: 12 pages, 4 figures, Proceedings of the NSRT06 Conferenc
Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force
Theoretical results for giant resonances in the three doubly magic exotic
nuclei Ni, Sn and Sn are obtained from Hartree-Fock (HF)
plus Random Phase Approximation (RPA) calculations using the D1S
parametrization of the Gogny two-body effective interaction. Special attention
is paid to full consistency between the HF field and the RPA particle-hole
residual interaction. The results for the exotic nuclei, on average, appear
similar to those of stable ones, especially for quadrupole and octupole states.
More exotic systems have to be studied in order to confirm such a trend. The
low energy of the monopole resonance in Ni suggests that the compression
modulus in this neutron rich nucleus is lower than the one of stable ones.Comment: 16 pages, 10 figure
Development and Validation of the Metric-Based Assessment of a Robotic Vessel Dissection, Vessel Loop Positioning, Clip Applying and Bipolar Coagulation Task on an Avian Model
The evolution of robotic technology and its diffusion does not seem to have been adequately accompanied by the development and implementation of surgeon training programs that ensure skilled and safe device use at the start of the learning curve. The objective of the study is to develop and validate performance metrics for vessel dissection, vessel loop positioning, clip applying and bipolar coagulation using an avian model. Three robotic surgeons and a behavioral scientist characterized the performance metrics of the task according to the proficiency-based progression methodology. Fourteen experienced robotic surgeons from different European countries participated in a modified online Delphi consensus. Eight experienced surgeons and eight novices performed the robotic task twice. In the Delphi meeting, 100% consensus was reached on the performance metrics. Novice surgeons took 26 min to complete the entire task on trial 1 and 20 min on trial 2. Experts took 10.1 min and 9.5 min. On average the Expert Group completed the task 137% faster than the Novice Group. The amount of time to reach the vessel part of the task was also calculated. Novice surgeons took 26 min on trial 1 and 20 min on trial 2. Experts took 5.5 min and 4.8 min. On average the experts reached the vessel 200% faster than the novices. The Expert Group made 155% fewer performance errors than the Novice Group. The mean IRR of video-recorded performance assessments for all metrics was 0.96 (95% confidence intervals (CI) lower = 0.94-upper = 0.98). We report the development and validation for a standard and replicable basic robotic vessel dissection, vessel loop positioning, clip applying and bipolar coagulation task on an avian model. The development of objective performance metrics, based on a transparent and fair methodology (i.e., PBP), is the first fundamental step toward quality assured training. This task developed on the avian model proved to have good results in the validation study.info:eu-repo/semantics/publishedVersio
Instantaneous Shape Sampling - a model for the -absorption cross section of transitional nuclei
The influence of the quadrupole shape fluctuations on the dipole vibrations
in transitional nuclei is investigated in the framework of the Instantaneous
Shape Sampling Model, which combines the Interacting Boson Model for the slow
collective quadrupole motion with the Random Phase Approximation for the rapid
dipole vibrations. Coupling to the complex background configurations is taken
into account by folding the results with a Lorentzian with an energy dependent
width. The low-energy energy portion of the - absorption cross section,
which is important for photo-nuclear processes, is studied for the isotopic
series of Kr, Xe, Ba, and Sm. The experimental cross sections are well
reproduced. The low-energy cross section is determined by the Landau
fragmentation of the dipole strength and its redistribution caused by the shape
fluctuations. Collisional damping only wipes out fluctuations of the absorption
cross section, generating the smooth energy dependence observed in experiment.
In the case of semi-magic nuclei, shallow pygmy resonances are found in
agreement with experiment
Low-energy dipole excitations towards the proton drip-line: doubly magic 48Ni
The properties of the low-energy dipole response are investigated for the
proton-rich doubly magic nucleus Ni, in a comparative study of two
microscopic models: fully self-consistent Relativistic Random-Phase
Approximation(RRPA) based on the novel density-dependent meson-exchange
interactions, and Continuum Random-Phase Approximation(CRPA) using Skyrme-type
interactions with the continuum properly included. Both models predict the
existence of the low-energy soft mode, i.e. the proton pygmy dipole resonance
(PDR), for which the transition densities and RPA amplitudes indicate the
dynamics of loosely bound protons vibrating against the rest of the nucleons.
The CRPA analysis indicates that the escape width for the proton PDR is rather
large, as a result of the coupling to the continuum.Comment: 12 pages, 3 figures, accepted for publication in Phys. Lett.
Interaction of the single-particle and collective degrees of freedom in non-magic nuclei: the role of phonon tadpole terms
A method of a consistent consideration of the phonon contributions to mass
and gap operators in non-magic nuclei is developed in the so-called g^2
approximation, where g is the low-lying phonon creation amplitude. It includes
simultaneous accounting for both the usual non-local terms and the phonon
tadpole ones. The relations which allow the tadpoles to be calculated without
any new parameters are derived. As an application of the results, the role of
the phonon tadpoles in the single-particle strength distribution and in the
single-particle energies and gap values has been considered. Relation to the
problem of the surface nature of pairing is discussed.Comment: 22 pages, 7 figure
Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei
The collective excitation phenomena in atomic nuclei are studied in two
different formulations of the Random Phase Approximation (RPA): (i) RPA based
on correlated realistic nucleon-nucleon interactions constructed within the
Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA)
derived from effective Lagrangians with density-dependent meson-exchange
interactions. The former includes the dominant interaction-induced short-range
central and tensor correlations by means of an unitary transformation. It is
shown that UCOM-RPA correlations induced by collective nuclear vibrations
recover a part of the residual long-range correlations that are not explicitly
included in the UCOM Hartree-Fock ground state. Both RPA models are employed in
studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei
across the nuclide chart, with an emphasis on the sensitivity of its properties
on the constraints for the range of the UCOM correlation functions. Within the
Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov
model, the occurrence of pronounced low-lying dipole excitations is predicted
in nuclei towards the proton drip-line. From the analysis of the transition
densities and the structure of the RQRPA amplitudes, it is shown that these
states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei,
conference proceedings, "Frontiers in the Physics of Nucleus", St.
Petersburg, 28. June-1. July, 200
- …