143 research outputs found

    Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension

    Get PDF
    Background: Essential hypertension is a significant risk factor for cardiovascular diseases. Emerging research suggests a role of DNA methylation in blood pressure physiology. We aimed to investigate epigenetic associations of promoter related CpG sites to essential hypertension in a genome-wide methylation approach. Methods: The genome-wide methylation pattern in whole blood was measured in 11 obese patients before and six months after Roux-en-Y gastric bypass surgery using the Illumina 450 k beadchip. CpG sites located within 1500 bp of the transcriptional start site of adjacent genes were included in our study, resulting in 124 199 probes investigated in the subsequent analysis. Percent changes in methylation states and SBP measured before and six months after surgery were calculated. These parameters were correlated to each other using the Spearman's rank correlation method (Edgeworth series approximation). To further investigate the detected relationship between candidate CpG sites and systolic blood pressure levels, binary logistic regression analyses were performed in a larger and independent cohort of 539 individuals aged 19-101 years to elucidate a relationship between EH and the methylation state in candidate CpG sites. Results: We identified 24 promoter associated CpG sites that correlated with change in SBP after RYGB surgery (p < 10-16). Two of these CpG loci (cg00875989, cg09134341) were significantly hypomethylated in dependency of EH (p < 10-03). These results were independent of age, BMI, ethnicity and sex. Conclusions: The identification of these novel CpG sites may contribute to a further understanding of the epigenetic regulatory mechanisms underlying the development of essential hypertension

    Identifying Protective Factors in the Association Between Peer Victimization and Internalizing Symptoms of African American Adolescents in Four Chicago’s Southside Neighborhoods

    Get PDF
    Guided by the Risk and Resilience Model, the present study aims to generate hypotheses by investigating a wide range of variables that might buffer the association between peer victimization and internalizing symptoms from a convenience sample of African American adolescents in four neighborhoods in Chicago’s Southside. Measures for the study included internalizing symptoms, peer victimization, four protective factors (parental closeness, teacher’s care, religiosity, and positive future orientation) and covariates (age, sex, and government assistance). Controlling for the covariates, a series of multivariate regression analyses were conducted to explore the direct effects of peer victimization and internalizing symptoms and the interaction between peer victimization and the four protective factors. The study found that peer victimization was directly associated with internalizing symptoms. In terms of the interactions, the study found that parental closeness moderated the association between peer victimization and internalizing symptoms. The findings show that parental closeness is an important protective factor that needs to be considered in the research hypotheses. The findings specifically demonstrated the importance of developing hypotheses to test whether parental closeness protects adolescents from internalizing symptoms linked to peer victimization

    Recent advances in understanding the role of FOXO3

    Get PDF
    The forkhead box O3 (FOXO3, or FKHRL1) protein is a member of the FOXO subclass of transcription factors. FOXO proteins were originally identified as regulators of insulin-related genes; however, they are now established regulators of genes involved in vital biological processes, including substrate metabolism, protein turnover, cell survival, and cell death. FOXO3 is one of the rare genes that have been consistently linked to longevity in in vivo models. This review provides an update of the most recent research pertaining to the role of FOXO3 in (i) the regulation of protein turnover in skeletal muscle, the largest protein pool of the body, and (ii) the genetic basis of longevity. Finally, it examines (iii) the role of microRNAs in the regulation of FOXO3 and its impact on the regulation of the cell cycle

    Roux-En Y Gastric Bypass Surgery Induces Genome-Wide Promoter-Specific Changes in DNA Methylation in Whole Blood of Obese Patients

    Get PDF
    Context DNA methylation has been proposed to play a critical role in many cellular and biological processes. Objective To examine the influence of Roux-en-Y gastric bypass (RYGB) surgery on genome-wide promoter-specific DNA methylation in obese patients. Promoters are involved in the initiation and regulation of gene transcription. Methods Promoter-specific DNA methylation in whole blood was measured in 11 obese patients (presurgery BMI >35 kg/m2, 4 females), both before and 6 months after RYGB surgery, as well as once only in a control group of 16 normal-weight men. In addition, body weight and fasting plasma glucose were measured after an overnight fast. Results The mean genome-wide distance between promoter-specific DNA methylation of obese patients at six months after RYGB surgery and controls was shorter, as compared to that at baseline (p<0.001). Moreover, postsurgically, the DNA methylation of 51 promoters was significantly different from corresponding values that had been measured at baseline (28 upregulated and 23 downregulated, P<0.05 for all promoters, Bonferroni corrected). Among these promoters, an enrichment for genes involved in metabolic processes was found (n = 36, P<0.05). In addition, the mean DNA methylation of these 51 promoters was more similar after surgery to that of controls, than it had been at baseline (P<0.0001). When controlling for the RYGB surgery-induced drop in weight (-24% of respective baseline value) and fasting plasma glucose concentration (-16% of respective baseline value), the DNA methylation of only one out of 51 promoters (~2%) remained significantly different between the pre-and postsurgery time points. Conclusions Epigenetic modifications are proposed to play an important role in the development of and predisposition to metabolic diseases, including type II diabetes and obesity. Thus, our findings may form the basis for further investigations to unravel the molecular effects of gastric bypass surgery. Clinical Trial ClinicalTrials.gov NCT0173074

    Longitudinal DNA methylation changes at MET may alter HGF/c-MET signalling in adolescents at risk for depression

    Get PDF
    Unrecognized depression during adolescence can result in adult suicidal behaviour. The aim of this study was to identify, replicate and characterize DNA methylation (DNAm) shifts in depression aetiology, using a longitudinal, multi-tissue (blood and brain) and multi-layered (genetics, epigenetics, transcriptomics) approach. We measured genome-wide blood DNAm data at baseline and one-year follow-up, and imputed genetic variants, in 59 healthy adolescents comprising the discovery cohort. Depression and suicidal symptoms were determined using the Development and Well-Being Assessment (DAWBA) depression band, Montgomery-Åsberg Depression Rating Scale-Self (MADRS-S) and SUicide Assessment Scale (SUAS). DNAm levels at follow-up were regressed against depression scores, adjusting for sex, age and the DNAm residuals at baseline. Higher methylation levels of 5% and 13% at cg24627299 within the MET gene were associated with higher depression scores (praw<1e-4) and susceptibility for suicidal symptoms (padj.<0.005). The nearby rs39748 was discovered to be a methylation and expression quantitative trait locus in blood cells. mRNA levels of hepatocyte growth factor (HGF) expression, known to strongly interact with MET, were inversely associated with methylation levels at cg24627299, in an independent cohort of 1180 CD14+ samples. In an open-access dataset of brain tissue, lower methylation at cg24627299 was found in 45 adults diagnosed with major depressive disorder compared with matched controls (padj.<0.05). Furthermore, lower MET expression was identified in the hippocampus of depressed individuals compared with controls in a fourth, independent cohort. Our findings reveal methylation changes at MET in the pathology of depression, possibly involved in downregulation of HGF/c-MET signalling the hippocampal region

    A methylome-wide mQTL analysis reveals associations of methylation sites with GAD1 and HDAC3 SNPs and a general psychiatric risk score

    Get PDF
    Genome-wide association studies have identified a number of single-nucleotide polymorphisms (SNPs) that are associated with psychiatric diseases. Increasing body of evidence suggests a complex connection of SNPs and the transcriptional and epigenetic regulation of gene expression, which is poorly understood. In the current study, we investigated the interplay between genetic risk variants, shifts in methylation and mRNA levels in whole blood from 223 adolescents distinguished by a risk for developing psychiatric disorders. We analyzed 37 SNPs previously associated with psychiatric diseases in relation to genome-wide DNA methylation levels using linear models, with Bonferroni correction and adjusting for cell-type composition. Associations between DNA methylation, mRNA levels and psychiatric disease risk evaluated by the Development and Well-Being Assessment (DAWBA) score were identified by robust linear models, Pearson's correlations and binary regression models. We detected five SNPs (in HCRTR1, GAD1, HADC3 and FKBP5) that were associated with eight CpG sites, validating five of these SNP-CpG pairs. Three of these CpG sites, that is, cg01089319 (GAD1), cg01089249 (GAD1) and cg24137543 (DIAPH1), manifest in significant gene expression changes and overlap with active regulatory regions in chromatin states of brain tissues. Importantly, methylation levels at cg01089319 were associated with the DAWBA score in the discovery group. These results show how distinct SNPs linked with psychiatric diseases are associated with epigenetic shifts with relevance for gene expression. Our findings give a novel insight on how genetic variants may modulate risks for the development of psychiatric diseases

    Deciphering the Finger Prints of Brain Cancer Glioblastoma Multiforme from Four Different Patients by Using Near Infrared Raman Spectroscopy

    Get PDF
    To explore the effectiveness of Raman spectra to diagnose brain cancer glioblastoma multiforme (GBM), we investigated the Raman spectra of single cell from four different GBM cell lines developed from four different patients and analyzed the spectra. The Raman spectra of brain cancer (GBM) cells were similar in all these cell lines. The results indicate that Raman spectra can offer the experimental basis for the cancer diagnosis and treatment

    Mitochondrial respiration variability and simulations in human skeletal muscle: The Gene SMART study

    Get PDF
    Mitochondrial respiration using the oxygraph‐2k respirometer (Oroboros) is widely used to estimate mitochondrial capacity in human skeletal muscle. Here, we measured mitochondrial respiration variability, in a relatively large sample, and for the first time, using statistical simulations, we provide the sample size required to detect meaningful respiration changes following lifestyle intervention. Muscle biopsies were taken from healthy, young men from the Gene SMART cohort, at multiple time points. We utilized samples for each measurement with two technical repeats using two respirometer chambers (n = 160 pairs of same muscle after removal of low‐quality samples). We measured the Technical Error of measurement (TEM) and the coefficient of variation (CV) for each mitochondrial complex. There was a high correlation between measurements from the two chambers (R > 0.7 P 15% for all complexes. We performed statistical simulations of a range of effect sizes at 80% power and found that 75 participants (with duplicate measurements) are required to detect a 6% change in mitochondrial respiration after an intervention, while for interventions with 11% effect size, ~24 participants are sufficient. The high variability in respiration suggests that the typical sample sizes in exercise studies may not be sufficient to capture exercise‐induced changes

    Muscle miRNAs are influenced by sex at baseline and in response to exercise

    Get PDF
    Background: Sex differences in microRNA (miRNA) expression profiles have been found across multiple tissues. Skeletal muscle is one of the most sex-biased tissues of the body. MiRNAs are necessary for development and have regulatory roles in determining skeletal muscle phenotype and have important roles in the response to exercise in muscle. Yet there is limited research into the role and regulation of miRNAs in the skeletal muscle at baseline and in response to exercise, a well-known modulator of miRNA expression. The aim of this study was to investigate the effect of sex on miRNA expression in the skeletal muscle at baseline and after an acute bout of high-intensity interval exercise. A total of 758 miRNAs were measured using Taqman®miRNA arrays in the skeletal muscle of 42 healthy participants from the Gene SMART study (23 males and 19 females of comparable fitness levels and aged 18–45 years), of which 308 were detected. MiRNAs that differed by sex at baseline and whose change in expression following high-intensity interval exercise differed between the sexes were identified using mixed linear models adjusted for BMI and Wpeak. We performed in silico analyses to identify the putative gene targets of the exercise-induced, sex-specific miRNAs and overrepresentation analyses to identify enriched biological pathways. We performed functional assays by overexpressing two sex-biased miRNAs in human primary muscle cells derived from male and female donors to understand their downstream effects on the transcriptome. Results: At baseline, 148 miRNAs were differentially expressed in the skeletal muscle between the sexes. Interaction analysis identified 111 miRNAs whose response to an acute bout of high-intensity interval exercise differed between the sexes. Sex-biased miRNA gene targets were enriched for muscle-related processes including proliferation and differentiation of muscle cells and numerous metabolic pathways, suggesting that miRNAs participate in programming sex differences in skeletal muscle function. Overexpression of sex-biased miRNA-30a and miRNA-30c resulted in profound changes in gene expression profiles that were specific to the sex of the cell donor in human primary skeletal muscle cells. Conclusions: We uncovered sex differences in the expression levels of muscle miRNAs at baseline and in response to acute high-intensity interval exercise. These miRNAs target regulatory pathways essential to skeletal muscle development and metabolism. Our findings highlight that miRNAs play an important role in programming sex differences in the skeletal muscle phenotype
    corecore