84 research outputs found
From ‘Harry Potter’ to ‘Bachelor Boy’ and beyond: Bridging the gap between expectations and reality for first year students
The focus of this paper is two-fold: to present data from a research project which explores the expectations/reality mismatches of first year students who were first in the family to attend university and to outline two different approaches that address the needs of beginning students. Undoubtedly, most new students arriving at university experience varying degrees of ‘culture shock’ when their expectations fail to match the reality they encounter. However, for students from equity backgrounds and those who are the first in family, this mismatch can be immense. Many of the expectations presumed both prior to arrival at university and during the initial stages of study may remain hidden or unexplained. There is now widespread recognition of the need to provide improved preparation and support for students entering the tertiary sector. A key implication for each university must be to establish a ‘community of practice’ that serves to initiate new students into its institutional culture
Improving Benefit-harm Assessment of Therapies from the Patient Perspective: OMERACT Premeeting Toward Consensus on Core Sets for Randomized Controlled Trials
Objective: Outcome Measures in Rheumatology (OMERACT) convened a premeeting in 2018 to bring together patients, regulators, researchers, clinicians, and consumers to build upon previous OMERACT drug safety work, with patients fully engaged throughout all phases.
Methods: Day 1 included a brief introduction to the history of OMERACT and methodology, and an overview of current efforts within and outside OMERACT to identify patient-reported medication safety concerns. On Day 2, two working groups presented results; after each, breakout groups were assembled to discuss findings.
Results: Five themes pertaining to drug safety measurement emerged.
Conclusion: Current approaches have failed to include data from the patient’s perspective. A better understanding of how individuals with rheumatic diseases view potential benefits and harms of therapies is essential
Emergent research and priorities for shark and ray conservation
Over the past 4 decades there has been a growing concern for the conservation status of elasmobranchs (sharks and rays). In 2002, the first elasmobranch species were added to Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Less than 20 yr later, there were 39 species on Appendix II and 5 on Appendix I. Despite growing concern, effective conservation and management remain challenged by a lack of data on population status for many species, human−wildlife interactions, threats to population viability, and the efficacy of conservation approaches. We surveyed 100 of the most frequently published and cited experts on elasmobranchs and, based on ranked responses, prioritized 20 research questions on elasmobranch conservation. To address these questions, we then convened a group of 47 experts from 35 institutions and 12 countries. The 20 questions were organized into the following broad categories: (1) status and threats, (2) population and ecology, and (3) conservation and management. For each section, we sought to synthesize existing knowledge, describe consensus or diverging views, identify gaps, and suggest promising future directions and research priorities. The resulting synthesis aggregates an array of perspectives on emergent research and priority directions for elasmobranch conservation
The SPARC Toroidal Field Model Coil Program
The SPARC Toroidal Field Model Coil (TFMC) Program was a three-year effort
between 2018 and 2021 that developed novel Rare Earth Yttrium Barium Copper
Oxide (REBCO) superconductor technologies and then successfully utilized these
technologies to design, build, and test a first-in-class, high-field (~20 T),
representative-scale (~3 m) superconducting toroidal field coil. With the
principal objective of demonstrating mature, large-scale, REBCO magnets, the
project was executed jointly by the MIT Plasma Science and Fusion Center (PSFC)
and Commonwealth Fusion Systems (CFS). The TFMC achieved its programmatic goal
of experimentally demonstrating a large-scale high-field REBCO magnet,
achieving 20.1 T peak field-on-conductor with 40.5 kA of terminal current, 815
kN/m of Lorentz loading on the REBCO stacks, and almost 1 GPa of mechanical
stress accommodated by the structural case. Fifteen internal demountable
pancake-to-pancake joints operated in the 0.5 to 2.0 nOhm range at 20 K and in
magnetic fields up to 12 T. The DC and AC electromagnetic performance of the
magnet, predicted by new advances in high-fidelity computational models, was
confirmed in two test campaigns while the massively parallel, single-pass,
pressure-vessel style coolant scheme capable of large heat removal was
validated. The REBCO current lead and feeder system was experimentally
qualified up to 50 kA, and the crycooler based cryogenic system provided 600 W
of cooling power at 20 K with mass flow rates up to 70 g/s at a maximum design
pressure of 20 bar-a for the test campaigns. Finally, the feasibility of using
passive, self-protection against a quench in a fusion-scale NI TF coil was
experimentally assessed with an intentional open-circuit quench at 31.5 kA
terminal current.Comment: 17 pages 9 figures, overview paper and the first of a six-part series
of papers covering the TFMC Progra
Criteria for selecting implementation science theories and frameworks: results from an international survey
Abstract Background Theories provide a synthesizing architecture for implementation science. The underuse, superficial use, and misuse of theories pose a substantial scientific challenge for implementation science and may relate to challenges in selecting from the many theories in the field. Implementation scientists may benefit from guidance for selecting a theory for a specific study or project. Understanding how implementation scientists select theories will help inform efforts to develop such guidance. Our objective was to identify which theories implementation scientists use, how they use theories, and the criteria used to select theories. Methods We identified initial lists of uses and criteria for selecting implementation theories based on seminal articles and an iterative consensus process. We incorporated these lists into a self-administered survey for completion by self-identified implementation scientists. We recruited potential respondents at the 8th Annual Conference on the Science of Dissemination and Implementation in Health and via several international email lists. We used frequencies and percentages to report results. Results Two hundred twenty-three implementation scientists from 12 countries responded to the survey. They reported using more than 100 different theories spanning several disciplines. Respondents reported using theories primarily to identify implementation determinants, inform data collection, enhance conceptual clarity, and guide implementation planning. Of the 19 criteria presented in the survey, the criteria used by the most respondents to select theory included analytic level (58%), logical consistency/plausibility (56%), empirical support (53%), and description of a change process (54%). The criteria used by the fewest respondents included fecundity (10%), uniqueness (12%), and falsifiability (15%). Conclusions Implementation scientists use a large number of criteria to select theories, but there is little consensus on which are most important. Our results suggest that the selection of implementation theories is often haphazard or driven by convenience or prior exposure. Variation in approaches to selecting theory warn against prescriptive guidance for theory selection. Instead, implementation scientists may benefit from considering the criteria that we propose in this paper and using them to justify their theory selection. Future research should seek to refine the criteria for theory selection to promote more consistent and appropriate use of theory in implementation science
Elliptic flow for phi mesons and (anti)deuterons in Au+Au collisions at sqrt(s_NN) = 200 GeV
Differential elliptic flow (v_2) for phi mesons and (anti)deuterons (d^bar)d
is measured for Au+Au collisions at sqrt(s_NN) = 200 GeV. The v_2 for phi
mesons follows the trend of lighter pi^+/- and K^+/- mesons, suggesting that
ordinary hadrons interacting with standard hadronic cross sections are not the
primary driver for elliptic flow development. The v_2 values for (d^bar)d
suggest that elliptic flow is additive for composite particles. This further
validation of the universal scaling of v_2 per constituent quark for baryons
and mesons suggests that partonic collectivity dominates the transverse
expansion dynamics.Comment: 343 authors, 6 pages text, 3 figures, REVTeX4. To be submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Measurement of direct photon production in p + p collisions at sqrt(s) = 200 GeV
Cross sections for mid-rapidity production of direct photons in p+p
collisions at the Relativistic Heavy Ion Collider (RHIC) are reported for 3 <
p_T < 16 GeV/c. Next-to-leading order (NLO) perturbative QCD (pQCD) describes
the data well for p_T > 5 GeV/c, where the uncertainties of the measurement and
theory are comparable. We also report on the effect of requiring the photons to
be isolated from parton jet energy. The observed fraction of isolated photons
is well described by pQCD for p_T > 7 GeV/c.Comment: 330 authors, 6 pages text, 3 figures, one table. Submitted to Phys.
Rev. Lett. Plain text data tables for the points plotted in figures for this
and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
- …