155 research outputs found
Computable phenotype for real-world, data-driven retrospective identification of relapse in ANCA-associated vasculitis
Objective: ANCA-associated vasculitis (AAV) is a relapsing-remitting disease, resulting in incremental tissue injury. The gold-standard relapse definition (Birmingham Vasculitis Activity Score, BVAS>0) is often missing or inaccurate in registry settings, leading to errors in ascertainment of this key outcome. We sought to create a computable phenotype (CP) to automate retrospective identification of relapse using real-world data in the research setting.Methods: We studied 536 patients with AAV and >6 months follow-up recruited to the Rare Kidney Disease registry (a national longitudinal, multicentre cohort study). We followed five steps: (1) independent encounter adjudication using primary medical records to assign the ground truth, (2) selection of data elements (DEs), (3) CP development using multilevel regression modelling, (4) internal validation and (5) development of additional models to handle missingness. Cut-points were determined by maximising the F1-score. We developed a web application for CP implementation, which outputs an individualised probability of relapse.Results: Development and validation datasets comprised 1209 and 377 encounters, respectively. After classifying encounters with diagnostic histopathology as relapse, we identified five key DEs; DE1: change in ANCA level, DE2: suggestive blood/urine tests, DE3: suggestive imaging, DE4: immunosuppression status, DE5: immunosuppression change. F1-score, sensitivity and specificity were 0.85 (95% CI 0.77 to 0.92), 0.89 (95% CI 0.80 to 0.99) and 0.96 (95% CI 0.93 to 0.99), respectively. Where DE5 was missing, DE2 plus either DE1/DE3 were required to match the accuracy of BVAS.Conclusions: This CP accurately quantifies the individualised probability of relapse in AAV retrospectively, using objective, readily accessible registry data. This framework could be leveraged for other outcomes and relapsing diseases.Keywords: Classification; Epidemiology; Outcome Assessment, Health Care; Vasculitis
Computable phenotype for real-world, data-driven retrospective identification of relapse in ANCA-associated vasculitis
Objective: ANCA-associated vasculitis (AAV) is a relapsing-remitting disease, resulting in incremental tissue injury. The gold-standard relapse definition (Birmingham Vasculitis Activity Score, BVAS>0) is often missing or inaccurate in registry settings, leading to errors in ascertainment of this key outcome. We sought to create a computable phenotype (CP) to automate retrospective identification of relapse using real-world data in the research setting. Methods: We studied 536 patients with AAV and >6 months follow-up recruited to the Rare Kidney Disease registry (a national longitudinal, multicentre cohort study). We followed five steps: (1) independent encounter adjudication using primary medical records to assign the ground truth, (2) selection of data elements (DEs), (3) CP development using multilevel regression modelling, (4) internal validation and (5) development of additional models to handle missingness. Cut-points were determined by maximising the F1-score. We developed a web application for CP implementation, which outputs an individualised probability of relapse. Results: Development and validation datasets comprised 1209 and 377 encounters, respectively. After classifying encounters with diagnostic histopathology as relapse, we identified five key DEs; DE1: change in ANCA level, DE2: suggestive blood/urine tests, DE3: suggestive imaging, DE4: immunosuppression status, DE5: immunosuppression change. F1-score, sensitivity and specificity were 0.85 (95% CI 0.77 to 0.92), 0.89 (95% CI 0.80 to 0.99) and 0.96 (95% CI 0.93 to 0.99), respectively. Where DE5 was missing, DE2 plus either DE1/DE3 were required to match the accuracy of BVAS. Conclusions: This CP accurately quantifies the individualised probability of relapse in AAV retrospectively, using objective, readily accessible registry data. This framework could be leveraged for other outcomes and relapsing diseases
Habilitation provision for children and young people with vision impairment in the United Kingdom: A lack of clarity leading to inconsistencies
The key to empowering and supporting children and young people (CYP) with vision impairment (VI) to achieve their potential lies in the delivery of habilitation training. Evidence has revealed that provision of habilitation services across the United Kingdom was inconsistent, with CYP with VI not receiving services in some areas. This research explored the accessibility and quality of habilitation provision for CYP with VI via two studies: (1) 12 qualitative case studies of habilitation practice and (2) surveys of habilitation training experiences, with CYP with VI (n = 43) and with parents of CYP with VI (n = 68). Five themes were identified highlighting inconsistencies and variability in the delivery of habilitation training in recent years, a lack of focus on independent living skills training, on social inclusion and emotional well-being, a lack of support for parents and a lack of clarity with regard to the definition of habilitation, and who is responsible for providing training
HIV-1 DNA predicts disease progression and post-treatment virological control
In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials
Mucosal-associated invariant T (MAIT) cells are activated in the gastrointestinal tissue of patients with combination ipilimumab and nivolumab therapy-related colitis in a pathology distinct from ulcerative colitis
The aim of this study was to investigate the pathogenesis of combination ipilimumab and nivolumab-associated colitis (IN-COL) by measuring gut-derived and peripheral blood mononuclear cell (GMNC; PBMC) profiles. We studied GMNC and PBMC from patients with IN-COL, IN-treated with no adverse-events (IN-NAE), ulcerative colitis (UC) and healthy volunteers using flow cytometry. In the gastrointestinal-derived cells we found high levels of activated CD8+ T cells and mucosal-associated invariant T (MAIT) cells in IN-COL, changes that were not evident in IN-NAE or UC. UC, but not IN-C, was associated with a high proportion of regulatory T cells (Treg). We sought to determine if local tissue responses could be measured in peripheral blood. Peripherally, checkpoint inhibition instigated a rise in activated memory CD4+ and CD8+ T cells, regardless of colitis. Low circulating MAIT cells at baseline was associated with IN-COL patients compared with IN-NAE in one of two cohorts. UC, but not INCOL, was associated with high levels of circulating plasmablasts. In summary, the alterations in T cell subsets measured in IN-COL-affected tissue, characterized by high levels of activated CD8+ T cells and MAIT cells and a low proportion of Treg, reflected a pathology distinct from UC. These tissue changes differed from the periphery, where T cell activation was a widespread on-treatment effect, and circulating MAIT cell count was low but not reliably predictive of colitis
Deriving the dietary approaches to stop hypertension (DASH) score in women from seven pregnancy cohorts from the European alphabet consortium
The ALPHABET consortium aims to examine the interplays between maternal diet quality, epigenetics and offspring health in seven pregnancy/birth cohorts from five European countries. We aimed to use the Dietary Approaches to Stop Hypertension (DASH) score to assess diet quality, but different versions have been published. To derive a single DASH score allowing cross-country, cross-cohort and cross-period comparison and limiting data heterogeneity within the ALPHABET consortium, we harmonised food frequency questionnaire (FFQ) data collected before and during pregnancy in ≥26,500 women. Although FFQs differed strongly in length and content, we derived a consortium DASH score composed of eight food components by combining the prescriptive original DASH and the DASH described by Fung et al. Statistical issues tied to the nature of the FFQs led us to re-classify two food groups (grains and dairy products). Most DASH food components exhibited pronounced between-cohort variability, including non-full-fat dairy products (median intake ranging from 0.1 to 2.2 servings/day), sugar-sweetened beverages/sweets/added sugars (0.3–1.7 servings/day), fruits (1.1–3.1 servings/day), and vegetables (1.5–3.6 servings/day). We successfully developed a harmonized DASH score adapted to all cohorts being part of the ALPHABET consortium. This methodological work may benefit other research teams in adapting the DASH to their study’s specificities
Description of the data from the Collaborative Study on the Genetics of Alcoholism (COGA) and single-nucleotide polymorphism genotyping for Genetic Analysis Workshop 14
The data provided to the Genetic Analysis Workshop 14 (GAW 14) was the result of a collaboration among several different groups, catalyzed by Elizabeth Pugh from The Center for Inherited Disease Research (CIDR) and the organizers of GAW 14, Jean MacCluer and Laura Almasy. The DNA, phenotypic characterization, and microsatellite genomic survey were provided by the Collaborative Study on the Genetics of Alcoholism (COGA), a nine-site national collaboration funded by the National Institute of Alcohol and Alcoholism (NIAAA) and the National Institute of Drug Abuse (NIDA) with the overarching goal of identifying and characterizing genes that affect the susceptibility to develop alcohol dependence and related phenotypes. CIDR, Affymetrix, and Illumina provided single-nucleotide polymorphism genotyping of a large subset of the COGA subjects. This article briefly describes the dataset that was provided
Computable phenotype for real-world, data-driven retrospective identification of relapse in ANCA-associated vasculitis
ANCA-associated vasculitis (AAV) is a relapsing-remitting disease, resulting in incremental tissue injury. The gold-standard relapse definition (Birmingham Vasculitis Activity Score, BVAS>0) is often missing or inaccurate in registry settings, leading to errors in ascertainment of this key outcome. We sought to create a computable phenotype (CP) to automate retrospective identification of relapse using real-world data in the research setting. We studied 536 patients with AAV and >6 months follow-up recruited to the Rare Kidney Disease registry (a national longitudinal, multicentre cohort study). We followed five steps: (1) independent encounter adjudication using primary medical records to assign the ground truth, (2) selection of data elements (DEs), (3) CP development using multilevel regression modelling, (4) internal validation and (5) development of additional models to handle missingness. Cut-points were determined by maximising the F1-score. We developed a web application for CP implementation, which outputs an individualised probability of relapse. Development and validation datasets comprised 1209 and 377 encounters, respectively. After classifying encounters with diagnostic histopathology as relapse, we identified five key DEs; DE1: change in ANCA level, DE2: suggestive blood/urine tests, DE3: suggestive imaging, DE4: immunosuppression status, DE5: immunosuppression change. F1-score, sensitivity and specificity were 0.85 (95% CI 0.77 to 0.92), 0.89 (95% CI 0.80 to 0.99) and 0.96 (95% CI 0.93 to 0.99), respectively. Where DE5 was missing, DE2 plus either DE1/DE3 were required to match the accuracy of BVAS. This CP accurately quantifies the individualised probability of relapse in AAV retrospectively, using objective, readily accessible registry data. This framework could be leveraged for other outcomes and relapsing diseases
A persistent neutrophil-associated immune signature characterizes post-COVID-19 pulmonary sequelae
Interstitial lung disease and associated fibrosis occur in a proportion of individuals who have recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection through unknown mechanisms. We studied individuals with severe coronavirus disease 2019 (COVID-19) after recovery from acute illness. Individuals with evidence of interstitial lung changes at 3 to 6 months after recovery had an up-regulated neutrophil-associated immune signature including increased chemokines, proteases, and markers of neutrophil extracellular traps that were detectable in the blood. Similar pathways were enriched in the upper airway with a concomitant increase in antiviral type I interferon signaling. Interaction analysis of the peripheral phosphoproteome identified enriched kinases critical for neutrophil inflammatory pathways. Evaluation of these individuals at 12 months after recovery indicated that a subset of the individuals had not yet achieved full normalization of radiological and functional changes. These data provide insight into mechanisms driving development of pulmonary sequelae during and after COVID-19 and provide a rational basis for development of targeted approaches to prevent long-term complications
- …