13 research outputs found

    Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care

    Get PDF
    Medical Informatics (MI) and Bioinformatics (BI) are two interdisciplinary areas located at the intersection between computer science and medicine and biology, respectively. Historically, they have been separated and only occasionally have researchers of both disciplines collaborated. The completion of the Human Genome Project has brought about in this post genomic era the need for a synergy of these two disciplines to further advance in the study of diseases by correlating essential genotypic information with expressed phenotypic information. Biomedical Informatics (BMI) is the emerging technology that aims to put these two worlds together in the new rising genomic medicine. In this regard, institutions such as the European Commission have recently launched several initiatives to support a new combined research agenda, based on the potential for synergism of both disciplines. In this paper we review the results the BIOINFOMED study one of these projects funded by the E

    NBC's GEnesis Broadcast Automation System: . . .

    No full text
    GEnesis is a system in use at the NBC television network for automating the composition and distribution of video. It works in a mission critical environment; a system failure could potentially result in a substantial loss of revenue for the network. Tcl/Tk has been an integral part of the operator interface and data handling portions of the GEnesis system from the earliest stages of prototyping. We originally planned to replace the system prototype based on Tcl/Tk with a production system built in a compiled, object-oriented language and using commercial component software. After the prototype phase was completed, the developers and management together decided to keep numerous system components in Tcl, while migrating some complex and performance-critical functions from Tcl to a C++ message passing architecture. This paper discusses that decision and presents our experience with converting the prototype into a fully functional system

    System and method for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue

    No full text
    Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of Sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the Sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer

    System and method for multiplexed biomarker quantitation using single cell segmentation on sequentially stained tissue: US 8,995,740

    No full text
    Improved systems and methods for the analysis of digital images are provided. More particularly, the present disclosure provides for improved systems and methods for the analysis of digital images of biological tissue samples. Exemplary embodiments provide for: i) segmenting, ii) grouping, and iii) quantifying molecular protein profiles of individual cells in terms of Sub cellular compartments (nuclei, membrane, and cytoplasm). The systems and methods of the present disclosure advantageously perform tissue segmentation at the Sub-cellular level to facilitate analyzing, grouping and quantifying protein expression profiles of tissue in tissue sections globally and/or locally. Performing local-global tissue analysis and protein quantification advantageously enables correlation of spatial and molecular configuration of cells with molecular information of different types of cancer

    Open-source Software Sustainability Models: Initial White Paper From the Informatics Technology for Cancer Research Sustainability and Industry Partnership Working Group

    No full text
    BackgroundThe National Cancer Institute Informatics Technology for Cancer Research (ITCR) program provides a series of funding mechanisms to create an ecosystem of open-source software (OSS) that serves the needs of cancer research. As the ITCR ecosystem substantially grows, it faces the challenge of the long-term sustainability of the software being developed by ITCR grantees. To address this challenge, the ITCR sustainability and industry partnership working group (SIP-WG) was convened in 2019. ObjectiveThe charter of the SIP-WG is to investigate options to enhance the long-term sustainability of the OSS being developed by ITCR, in part by developing a collection of business model archetypes that can serve as sustainability plans for ITCR OSS development initiatives. The working group assembled models from the ITCR program, from other studies, and from the engagement of its extensive network of relationships with other organizations (eg, Chan Zuckerberg Initiative, Open Source Initiative, and Software Sustainability Institute) in support of this objective. MethodsThis paper reviews the existing sustainability models and describes 10 OSS use cases disseminated by the SIP-WG and others, including 3D Slicer, Bioconductor, Cytoscape, Globus, i2b2 (Informatics for Integrating Biology and the Bedside) and tranSMART, Insight Toolkit, Linux, Observational Health Data Sciences and Informatics tools, R, and REDCap (Research Electronic Data Capture), in 10 sustainability aspects: governance, documentation, code quality, support, ecosystem collaboration, security, legal, finance, marketing, and dependency hygiene. ResultsInformation available to the public reveals that all 10 OSS have effective governance, comprehensive documentation, high code quality, reliable dependency hygiene, strong user and developer support, and active marketing. These OSS include a variety of licensing models (eg, general public license version 2, general public license version 3, Berkeley Software Distribution, and Apache 3) and financial models (eg, federal research funding, industry and membership support, and commercial support). However, detailed information on ecosystem collaboration and security is not publicly provided by most OSS. ConclusionsWe recommend 6 essential attributes for research software: alignment with unmet scientific needs, a dedicated development team, a vibrant user community, a feasible licensing model, a sustainable financial model, and effective product management. We also stress important actions to be considered in future ITCR activities that involve the discussion of the sustainability and licensing models for ITCR OSS, the establishment of a central library, the allocation of consulting resources to code quality control, ecosystem collaboration, security, and dependency hygiene
    corecore