34 research outputs found

    Presence of a functional but dispensable Nuclear Export Signal in the HTLV-2 Tax protein

    Get PDF
    BACKGROUND: Human T-cell leukemia virus type 1 and type 2 are related human retroviruses. HTLV-1 is the etiological agent of the Adult T-cell Leukemia/Lymphoma and of the Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy, whereas, HTLV-2 infection has not been formally associated with any T-cell malignancy. HTLV-1 and 2 genomes encode, respectively, the Tax1 and Tax2 proteins whose role is to transactivate the viral promoter. HTLV-1 and HTLV-2 Tax sequences display 28% divergence at the amino acid level. Tax1 is a shuttling protein that possesses both a non canonical nuclear import (NLS) and a nuclear export (NES) signal. We have recently demonstrated that Tax1 and Tax2 display different subcellular localization and that residues 90–100 are critical for this process. We investigate in the present report, whether Tax2 also possesses a functional NES. RESULTS: We first used a NES prediction method to determine whether the Tax2 protein might contain a NES and the results do suggest the presence of a NES sequence in Tax2. Using Green Fluorescent Protein-NES (GFP-NES) fusion proteins, we demonstrate that the Tax2 sequence encompasses a functional NES (NES2). As shown by microscope imaging, NES2 is able to mediate translocation of GFP from the nucleus, without the context of a full length Tax protein. Furthermore, point mutations or leptomycin B treatment abrogate NES2 function. However, within the context of full length Tax2, similar point mutations in the NES2 leucine rich stretch do not modify Tax2 localization. Finally, we also show that Tax1 NES function is dependent upon the positioning of the nuclear export signal "vis-à-vis" GFP. CONCLUSION: HTLV-2 Tax NES is functional but dispensable for the protein localization in vitro

    Discovery of a new human T-cell lymphotropic virus (HTLV-3) in Central Africa

    Get PDF
    Human T-cell Leukemia virus type 1 (HTLV-1) and type 2 (HTLV-2) are pathogenic retroviruses that infect humans and cause severe hematological and neurological diseases. Both viruses have simian counterparts (STLV-1 and STLV-2). STLV-3 belongs to a third group of lymphotropic viruses which infect numerous African monkeys species. Among 240 Cameroonian plasma tested for the presence of HTLV-1 and/or HTLV-2 antibodies, 48 scored positive by immunofluorescence. Among those, 27 had indeterminate western-blot pattern. PCR amplification of pol and tax regions, using HTLV-1, -2 and STLV-3 highly conserved primers, demonstrated the presence of a new human retrovirus in one DNA sample. tax (180 bp) and pol (318 bp) phylogenetic analyses demonstrated the strong relationships between the novel human strain (Pyl43) and STLV-3 isolates from Cameroon. The virus, that we tentatively named HTLV-3, originated from a 62 years old Bakola Pygmy living in a remote settlement in the rain forest of Southern Cameroon. The plasma was reactive on MT2 cells but was negative on C19 cells. The HTLV 2.4 western-blot exhibited a strong reactivity to p19 and a faint one to MTA-1. On the INNO-LIA strip, it reacted faintly with the generic p19 (I/II), but strongly to the generic gp46 (I/II) and to the specific HTLV-2 gp46. The molecular relationships between Pyl43 and STLV-3 are thus not paralleled by the serological results, as most of the STLV-3 infected monkeys have an "HTLV-2 like" WB pattern. In the context of the multiple interspecies transmissions which occurred in the past, and led to the present-day distribution of the PTLV-1, it is thus very tempting to speculate that this newly discovered human retrovirus HTLV-3 might be widespread, at least in the African continent

    Modes of transmission and genetic diversity of foamy viruses in a Macaca tonkeana colony

    Get PDF
    BACKGROUND: Foamy viruses are exogenous complex retroviruses that are highly endemic in several animal species, including monkeys and apes, where they cause persistent infection. Simian foamy viral (SFV) infection has been reported in few persons occupationally exposed to non-human primates (NHP) in zoos, primate centers and laboratories, and recently in few hunters from central Africa. Most of the epidemiological works performed among NHP populations concern cross-sectional studies without long-term follow-up. Therefore, the exact timing and the modes of transmission of SFVs remain not well known, although sexual and oral transmissions have been suspected. We have conducted a longitudinal study in a free-breeding colony of Macaca tonkeana in order (1) to determine the prevalence of the infection by foamy viruses, (2) to characterize molecularly the viruses infecting such animals, (3) to study their genetic variability overtime by long-term follow-up of several DNA samples in a series of specific animals, and (4) to get new insights concerning the timing and the modes of SFVs primary infection in these monkeys by combining serology and molecular means, as well as studies of familial structures and long-term behavioral observations. RESULTS/CONCLUSION: We first demonstrated that this colony was highly endemic for SFVs, with a clear increase of seroprevalence with age. Only 4.7% of immatures, and 43,7% of sub-adults were found seropositive, while 89.5% of adults exhibited antibodies directed against SFV. We further showed that 6 different strains of foamy viruses (exhibiting a very low intra-strain and overtime genetic variability in the integrase gene) are circulating within this group. This suggests a possible infection by different strains within an animal. Lastly, we provide strong evidence that foamy viruses are mostly acquired through severe bites, mainly in sub-adults or young adults. Most cases of seroconversion occur after 7 years of age; from this age individuals competed for access to sexual partners, thus increasing the likelihood of being wounded. Furthermore, all the serological and molecular data, obtained in this free-breeding colony, argue against a significant transmission of SFVs from mother or father to infants as well as between siblings

    HTLV-2 in Central Africa: HTLV-2 subtype B strains similar to those found in Amerindian tribes are endemic in Bakola Pygmies from south Cameroon but not in surrounding Bantus and Baka Pygmies

    Get PDF
    International audienceBackground:Presence and origin of endemic foci of HTLV-2 infection in Africa remain a matter of debate.Material and methods:To better appreciate the epidemiological and molecular determinants of HTLV-2 infection in Central Africa, we performed a survey in 3903 inhabitants of a South Cameroon forest area, including 1051 Bakola Pygmies, 815 Baka Pygmies and 2037 Bantus living in their neighboring. HTLV-1 and HTLV-2 infection was determined by both specific serological (IFA and WB) and molecular (different generic and specific PCR) methods.Results:HTLV-1/2 prevalence was of 3% (117/3903) with 90 HTLV-1 (2.3%) and 27 HTLV-2 (0.7%). Surprisingly, HTLV-2 infection was restricted to Bakola Pygmies (27/1051 2.5%) with no HTLV-2 infection in any of the 2852 Baka or Bantus individuals. In Bakola Pygmies, HTLV-2 seroprevalence increased with age, reaching 6.5% in the elder persons. Ongoing intrafamilial HTLV-2 transmission was evidenced. Lymphoid T cell lines (CD8+ or CD4+, CD25 +) producing HTLV-2 antigens, were established from PBMCs cultures of HTLV-2 infected individuals. Sequences of a 672 nucleotide LTR fragment, obtained from 7 HTLV-2 samples, showed a very high degree of homologies among samples (< 1% nucleotide divergence) but also surprisingly with Amerindian HTLV-2 B strains. Complete sequence (8954 bp) of one isolate confirmed a typical HTLV-2 B strain.Conclusion:This study demonstrates clearly a HTLV-2 endemic population, with ongoing transmission, in Central Africa. Furthermore, it gives insights into several central questions regarding the origin and evolution rate of HTLV-2 and the migrations of infected populations

    Multiple retroviral infection by HTLV type 1, 2, 3 and simian foamy virus in a family of Pygmies from Cameroon.

    No full text
    International audienceTo better understand the origins and modes of transmission of HTLV-3 and to search for other retroviral infections (HTLV-1, HTLV-2, foamy viruses), we studied the family of a HTLV-3-infected individual (Pyl43), from Cameroon. Thirty-five persons were included. All adult men were still actively hunting nonhuman primates (NHP). All women were also butchering and cutting-up animals. Five persons reported a bite by an NHP. While HTLV-3 infection was only found in Pyl43, HTLV-1 and HTLV-2 infections were found, respectively, in 5 and 9 persons with one being co-infected by both retroviruses. Phylogenetic analysis suggested intra-familial transmission of HTLV-1 subtypes B and D and HTLV-2. One man was infected by a chimpanzee foamy virus, acquired probably 45years ago, through a bite. Acquisition of retroviral infections still occurs in central Africa involving to various extent not only intra-familial transmission for HTLV-1/HTLV-2 but also direct interspecies transmission from NHP for foamy virus and possibly for HTLV-1 and HTLV-3
    corecore