128 research outputs found

    Reconciling Human Rights and Sovereignty: A Framework for Global Property Law

    Get PDF

    p19(ARF) and Ras(V12) offer opposing regulation of DHX33 translation to dictate tumor cell fate

    Get PDF
    DHX33 is a pivotal DEAH-box RNA helicase in the multistep process of RNA polymerase I-directed transcription of the ribosomal DNA locus. We explored the regulation of DHX33 expression by Ras(V12) and ARF to determine DHX33's role in sensing these opposing signals to regulate ribosome biogenesis. In wild-type primary fibroblasts, Ras(V12) infection induced a transient increase in DHX33 protein level, as well as an rRNA transcriptional rate that was eventually suppressed by a delayed activation of the ARF/p53 pathway. DHX33 expression was exclusively controlled at the level of translation. ARF caused a dramatic reduction in polysome-associated DHX33 mRNAs, while Ras(V12) led to a complete shift of existing DHX33 mRNAs to actively translating polysomes. The translation of DHX33 by Ras(V12) was sensitive to inhibitors of phosphatidylinositol 3-kinase, mTOR, and mitogen-activated protein and was pivotal for enhanced rRNA transcription and enhanced overall cellular protein translation. In addition, DHX33 knockdown abolished Ras(V12)-induced rRNA transcription and protein translation and prevented both the in vitro and in vivo transforming properties of oncogenic Ras(V12). Our results directly implicate DHX33 as a crucial player in establishing rRNA synthesis rates in the face of Ras(V12) or ARF signals, adjusting ribosome biogenesis to match the appropriate growth or antigrowth signals

    Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint

    Get PDF
    The ARF tumor suppressor is a potent sensor of hyperproliferative cues emanating from oncogenic signaling. ARF responds to these cues by eliciting a cell cycle arrest, effectively abating the tumorigenic potential of these stimuli. Prior reports have demonstrated that oncogenic Ras(V12) signaling induces ARF through a mechanism mediated by the Dmp1 transcription factor. However, we now show that ARF protein is still induced in response to Ras(V12) in the absence of Dmp1 through the enhanced translation of existing Arf mRNAs. Here, we report that the progrowth Ras/tuberous sclerosis complex (TSC)/mTORC1 signaling pathway regulates ARF protein expression and triggers ARF-mediated tumor suppression through a novel translational mechanism. Hyperactivation of mTORC1 through Tsc1 loss resulted in a significant increase in ARF expression, activation of the p53 pathway, and a dramatic cell cycle arrest, which were completely reversed upon Arf deletion. ARF protein induced from Ras(V12) in the absence of Dmp1 repressed anchorage-independent colony formation in soft agar and tumor burden in an allograft model. Taken together, our data demonstrate the ability of the ARF tumor suppressor to respond to hypergrowth stimuli to prevent unwarranted tumor formation

    Elevated DDX21 regulates c-Jun activity and rRNA processing in human breast cancers

    Get PDF
    INTRODUCTION: The DDX21 RNA helicase has been shown to be a nucleolar and nuclear protein involved in ribosome RNA processing and AP-1 transcription. DDX21 is highly expressed in colon cancer, lymphomas, and some breast cancers, but little is known about how DDX21 might promote tumorigenesis. METHODS: Immunohistochemistry was performed on a breast cancer tissue array of 187 patients. In order to study the subcellular localization of DDX21 in both tumor tissue and tumor cell lines, indirect immunofluorescence was applied. The effect of DDX21 knockdown was measured by cellular apoptosis, rRNA processing assays, soft agar growth and mouse xenograft imaging. AP-1 transcriptional activity was analyzed with a luciferase reporter and bioluminescence imaging, as well as qRT-PCR analysis of downstream target, cyclin D1, to determine the mechanism of action for DDX21 in breast tumorigenesis. RESULTS: Herein, we show that DDX21 is highly expressed in breast cancer tissues and established cell lines. A significant number of mammary tumor tissues and established breast cancer cell lines exhibit nuclear but not nucleolar localization of DDX21. The protein expression level of DDX21 correlates with cell proliferation rate and is markedly induced by EGF signaling. Mechanistically, DDX21 is required for the phosphorylation of c-Jun on Ser73 and DDX21 deficiency markedly reduces the transcriptional activity of AP-1. Additionally, DDX21 promotes rRNA processing in multiple breast cancer cell lines. Tumor cells expressing high levels of endogenous DDX21 undergo apoptosis after acute DDX21 knockdown, resulting in significant reduction of tumorigenicity in vitro and in vivo. CONCLUSIONS: Our findings indicate that DDX21 expression in breast cancer cells can promote AP-1 activity and rRNA processing, and thus, promote tumorigenesis by two independent mechanisms. DDX21 could serve as a marker for a subset of breast cancer patients with higher proliferation potential and may be used as a therapeutic target for a subset of breast cancer patients. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-014-0449-z) contains supplementary material, which is available to authorized users

    ARF and p53 coordinate tumor suppression of an oncogenic IFN-β-STAT1-ISG15 signaling axis

    Get PDF
    SummaryThe ARF and p53 tumor suppressors are thought to act in a linear pathway to prevent cellular transformation in response to various oncogenic signals. Here, we show that loss of p53 leads to an increase in ARF protein levels, which function to limit the proliferation and tumorigenicity of p53-deficient cells by inhibiting an IFN-β-STAT1-ISG15 signaling axis. Human triple-negative breast cancer (TNBC) tumor samples with coinactivation of p53 and ARF exhibit high expression of both STAT1 and ISG15, and TNBC cell lines are sensitive to STAT1 depletion. We propose that loss of p53 function and subsequent ARF induction creates a selective pressure to inactivate ARF and propose that tumors harboring coinactivation of ARF and p53 would benefit from therapies targeted against STAT1 and ISG15 activation

    How to Improve the Quality of Life of Patients with Prostate Cancer Treated with Hormone Therapy?

    Get PDF
    Prostate cancer (PC) is a hormone-sensitive tumor. Androgen deprivation therapy (ADT) is the cornerstone of systemic therapy for patients with intermediate or high-risk localized, recurrent, and metastatic prostate cancer. Although generally well tolerated, ADT can lead to short- and long-term adverse events that can worsen the quality of life of patients with PC. In the last decade, the introduction of novel generation androgen receptor pathway inhibitors (ARPI) has resulted in an improvement in the prognosis of patients with metastatic PC when used in combination with ADT. The use of ARPI in increasingly early stages of the disease determines a longer exposure of patients to these treatments. Although ARPIs are normally well-tolerated drugs, they generally cause an increase in toxicity compared to ADT alone, being able to worsen some adverse events already induced by ADT or leading to the development of specific side effects. Although there are no specific treatments for all the adverse events induced by hormonal therapies, it is essential to know the possible toxicities induced by the different treatments and to start procedures to prevent and/or recognize and consequently treat them early in order to not compromise the quality of life of the patients with PC. The aim of this review is to describe the adverse events induced by hormonal therapies. We will first describe the side effects induced by both ADT and ARPI and then the specific adverse events of the different ARPIs. Furthermore, we will try to highlight the possible therapeutic options to prevent or mitigate the toxicity induced by hormone therapies in order to improve the quality of life of the patients with PC

    p68/DdX5 supports β-Catenin & RNAP II during androgen receptor mediated transcription in prostate cancer

    Get PDF
    The DEAD box RNA helicase p68 (Ddx5) is an important androgen receptor (AR) transcriptional co-activator in prostate cancer (PCa) and is over-expressed in late stage disease. β-Catenin is a multifunctional protein with important structural and signalling functions which is up-regulated in PCa and similar to p68, interacts with the AR to co-activate expression of AR target genes. Importantly, p68 forms complexes with nuclear β-Catenin and promotes gene transcription in colon cancer indicating a functional interplay between these two proteins in cancer progression. In this study, we explore the relationship of p68 and β-Catenin in PCa to assess their potential co-operation in AR-dependent gene expression, which may be of importance in the development of castrate resistant prostate cancer (CRPCa). We use immunoprecipitation to demonstrate a novel interaction between p68 and β-Catenin in the nucleus of PCa cells, which is androgen dependent in LNCaP cells but androgen independent in a hormone refractory derivative of the same cell line (representative of the CRPCa disease type). Enhanced AR activity is seen in androgen-dependent luciferase reporter assays upon transient co-transfection of p68 and β-Catenin as an additive effect, and p68-depleted Chromatin-Immunoprecipitation (ChIP) showed a decrease in the recruitment of the AR and β-Catenin to androgen responsive promoter regions. In addition, we found p68 immunoprecipitated with the processive and non-processive form of RNA polymerase II (RNAP II) and show p68 recruited to elongating regions of the AR mediated PSA gene, suggesting a role for p68 in facilitating RNAP II transcription of AR mediated genes. These results suggest p68 is important in facilitating β-Catenin and AR transcriptional activity in PCa cells

    Human PAPS Synthase Isoforms Are Dynamically Regulated Enzymes with Access to Nucleus and Cytoplasm

    Get PDF
    In higher eukaryotes, PAPS synthases are the only enzymes producing the essential sulphate-donor 3′-phospho-adenosine-5′-phosphosulphate (PAPS). Recently, PAPS synthases have been associated with several genetic diseases and retroviral infection. To improve our understanding of their pathobiological functions, we analysed the intracellular localisation of the two human PAPS synthases, PAPSS1 and PAPSS2. For both enzymes, we observed pronounced heterogeneity in their subcellular localisation. PAPSS1 was predominantly nuclear, whereas PAPSS2 localised mainly within the cytoplasm. Treatment with the nuclear export inhibitor leptomycin B had little effect on their localisation. However, a mutagenesis screen revealed an Arg-Arg motif at the kinase interface exhibiting export activity. Notably, both isoforms contain a conserved N-terminal basic Lys-Lys-Xaa-Lys motif indispensable for their nuclear localisation. This nuclear localisation signal was more efficient in PAPSS1 than in PAPSS2. The activities of the identified localisation signals were confirmed by microinjection studies. Collectively, we describe unusual localisation signals of both PAPS synthase isoforms, mobile enzymes capable of executing their function in the cytoplasm as well as in the nucleus
    • …
    corecore