651 research outputs found

    A game to crowdsource data for affective computing

    Full text link
    This game submission describes BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions to advance affective computing. BeFaced uses state-of-theart facial expression tracking technology with dynamic difficulty adjustment to keep the player engaged and hence obtain a large and varied face dataset. FDG attendees will experience a novel affective game input interface and also investigate how the game design enables massive crowdsourcing in an extensible manner

    Initial perceptions of a casual game to crowdsource facial expressions in the wild

    Full text link
    The performance of affective computing systems often depend on the quality of the image databases they are trained on. However, creating good quality training databases is a laborious activity. In this paper, we evaluate BeFaced, a tile matching casual tablet game that enables massive crowdsourcing of facial expressions for the purpose of advancing facial expression analysis. The core aspect of BeFaced is game quality, as increased enjoyment and engagement translates to an increased quantity of varied facial expressions obtained. Hence a pilot user study was performed on 18 university students whereby observational and interview data were obtained during playtests. We found that most users enjoyed the game and were intrigued by the novelty in interacting with the facial expression gameplay mechanic, but also uncovered problems with feedback provision and the dynamic difficulty adjustment mechanism. These findings hence provide invaluable insights for the other researchers/ practitioners working on similar crowdsourcing games with a purpose, as well as for the development of BeFaced

    Crystallographic, Electronic, Thermal and Magnetic Properties of Single-Crystal SrCo2As2

    Full text link
    In tetragonal SrCo2As2 single crystals, inelastic neutron scattering measurements demonstrated that strong stripe-type antiferromagnetic (AFM) correlations occur at a temperature T = 5 K [W. Jayasekara et al., arXiv:1306.5174] that are the same as in the isostructural AFe2As2 (A = Ca, Sr, Ba) parent compounds of high-Tc superconductors. This surprising discovery suggests that SrCo2As2 may also be a good parent compound for high-Tc superconductivity. Here, structural and thermal expansion, electrical resistivity rho, angle-resolved photoemission spectroscopy (ARPES), heat capacity Cp, magnetic susceptibility chi, 75As NMR and neutron diffraction measurements of SrCo2As2 crystals are reported together with LDA band structure calculations that shed further light on this fascinating material. The c-axis thermal expansion coefficient alpha_c is negative from 7 to 300 K, whereas alpha_a is positive over this T range. The rho(T) shows metallic character. The ARPES measurements and band theory confirm the metallic character and in addition show the presence of a flat band near the Fermi energy E_F. The band calculations exhibit an extremely sharp peak in the density of states D(E_F) arising from a flat d_{x^2 - y^2} band. A comparison of the Sommerfeld coefficient of the electronic specific heat with chi(T = 0) suggests the presence of strong ferromagnetic itinerant spin correlations which on the basis of the Stoner criterion predicts that SrCo2As2 should be an itinerant ferromagnet, in conflict with the magnetization data. The chi(T) does have a large magnitude, but also exhibits a broad maximum at 115 K suggestive of dynamic short-range AFM spin correlations, in agreement with the neutron scattering data. The measurements show no evidence for any type of phase transition between 1.3 and 300 K and we propose that metallic SrCo2As2 has a gapless quantum spin-liquid ground state.Comment: 24 pages, 18 figures, 4 tables, 97 references; v2: updated Ref. 23 and corrected several typos; v3: minor revisions, published version. This is a companion paper to arXiv:1306.517

    Pressure-induced collapsed-tetragonal phase in SrCo2As2

    Get PDF
    We present high-energy x-ray diffraction data under applied pressures up to p = 29 GPa, neutron diffraction measurements up to p = 1.1 GPa, and electrical resistance measurements up to p = 5.9 GPa, on SrCo2As2. Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T = 7 K. The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a-axis is the same for the T and cT phases whereas, along the c-axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p <= 5.9 GPa and T >= 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p >= 5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.Comment: 6 pages, 5 figure
    corecore