603 research outputs found
An MDL framework for sparse coding and dictionary learning
The power of sparse signal modeling with learned over-complete dictionaries
has been demonstrated in a variety of applications and fields, from signal
processing to statistical inference and machine learning. However, the
statistical properties of these models, such as under-fitting or over-fitting
given sets of data, are still not well characterized in the literature. As a
result, the success of sparse modeling depends on hand-tuning critical
parameters for each data and application. This work aims at addressing this by
providing a practical and objective characterization of sparse models by means
of the Minimum Description Length (MDL) principle -- a well established
information-theoretic approach to model selection in statistical inference. The
resulting framework derives a family of efficient sparse coding and dictionary
learning algorithms which, by virtue of the MDL principle, are completely
parameter free. Furthermore, such framework allows to incorporate additional
prior information to existing models, such as Markovian dependencies, or to
define completely new problem formulations, including in the matrix analysis
area, in a natural way. These virtues will be demonstrated with parameter-free
algorithms for the classic image denoising and classification problems, and for
low-rank matrix recovery in video applications
Statistical Compressive Sensing of Gaussian Mixture Models
A new framework of compressive sensing (CS), namely statistical compressive
sensing (SCS), that aims at efficiently sampling a collection of signals that
follow a statistical distribution and achieving accurate reconstruction on
average, is introduced. For signals following a Gaussian distribution, with
Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably
smaller than the O(k log(N/k)) required by conventional CS, where N is the
signal dimension, and with an optimal decoder implemented with linear
filtering, significantly faster than the pursuit decoders applied in
conventional CS, the error of SCS is shown tightly upper bounded by a constant
times the k-best term approximation error, with overwhelming probability. The
failure probability is also significantly smaller than that of conventional CS.
Stronger yet simpler results further show that for any sensing matrix, the
error of Gaussian SCS is upper bounded by a constant times the k-best term
approximation with probability one, and the bound constant can be efficiently
calculated. For signals following Gaussian mixture models, SCS with a piecewise
linear decoder is introduced and shown to produce for real images better
results than conventional CS based on sparse models
Nonnegative Matrix Underapproximation for Robust Multiple Model Fitting
In this work, we introduce a highly efficient algorithm to address the
nonnegative matrix underapproximation (NMU) problem, i.e., nonnegative matrix
factorization (NMF) with an additional underapproximation constraint. NMU
results are interesting as, compared to traditional NMF, they present
additional sparsity and part-based behavior, explaining unique data features.
To show these features in practice, we first present an application to the
analysis of climate data. We then present an NMU-based algorithm to robustly
fit multiple parametric models to a dataset. The proposed approach delivers
state-of-the-art results for the estimation of multiple fundamental matrices
and homographies, outperforming other alternatives in the literature and
exemplifying the use of efficient NMU computations
- …