17 research outputs found

    Magnetic resonance spectroscopy and brain volumetry in mild cognitive impairment. A prospective study

    Get PDF
    Objective To assess the accuracy of magnetic resonance spectroscopy (1H-MRS) and brain volumetry in mild cognitive impairment (MCI) to predict conversion to probable Alzheimer''s disease (AD). Methods Forty-eight patients fulfilling the criteria of amnestic MCI who underwent a conventional magnetic resonance imaging (MRI) followed by MRS, and T1-3D on 1.5 Tesla MR unit. At baseline the patients underwent neuropsychological examination. 1H-MRS of the brain was carried out by exploring the left medial occipital lobe and ventral posterior cingulated cortex (vPCC) using the LCModel software. A high resolution T1-3D sequence was acquired to carry out the volumetric measurement. A cortical and subcortical parcellation strategy was used to obtain the volumes of each area within the brain. The patients were followed up to detect conversion to probable AD. Results After a 3-year follow-up, 15 (31.2%) patients converted to AD. The myo-inositol in the occipital cortex and glutamate + glutamine (Glx) in the posterior cingulate cortex predicted conversion to probable AD at 46.1% sensitivity and 90.6% specificity. The positive predictive value was 66.7%, and the negative predictive value was 80.6%, with an overall cross-validated classification accuracy of 77.8%. The volume of the third ventricle, the total white matter and entorhinal cortex predict conversion to probable AD at 46.7% sensitivity and 90.9% specificity. The positive predictive value was 70%, and the negative predictive value was 78.9%, with an overall cross-validated classification accuracy of 77.1%. Combining volumetric measures in addition to the MRS measures the prediction to probable AD has a 38.5% sensitivity and 87.5% specificity, with a positive predictive value of 55.6%, a negative predictive value of 77.8% and an overall accuracy of 73.3%. Conclusion Either MRS or brain volumetric measures are markers separately of cognitive decline and may serve as a noninvasive tool to monitor cognitive changes and progression to dementia in patients with amnestic MCI, but the results do not support the routine use in the clinical settings

    Fat infiltration and muscle hydration improve after high-intensity resistance training in women with sarcopenia. A randomized clinical trial

    Get PDF
    Resistance training is recommended for preventing sarcopenia, but the benefits for the quality and quantity of muscle mass are uncertain. The aim is to assess the effects of high-intensity resistance training (HIRT) on clinical and magnetic resonance imaging (MRI) parameters in women with sarcopenia.This work was supported by Universitat de Val`encia [grant number UV-19-INV_AE19] and Conselleria de Innovaci´ on, Universidades, Ciencia y Sociedad digital, Valencia, Spain [grant number GV/2020/071]. The sponsor had no role in the design, methods, subject recruitment, data collections, analysis and preparation of paper.Ciencias de la Actividad Física y del Deport

    First-Episode Psychotic Patients Showed Longitudinal Brain Changes Using fMRI With an Emotional Auditory Paradigm

    Get PDF
    Most previous longitudinal studies of functional magnetic resonance imaging (fMRI) in first-episode psychosis (FEP) using cognitive paradigm task found an increased activation after antipsychotic medications. We designed an emotional auditory paradigm to explore brain activation during emotional and nonemotional word processing. This study aimed to analyze if longitudinal changes in brain fMRI BOLD activation is present in patients vs. healthy controls. A group of FEP patients (n = 34) received clinical assessment and had a fMRI scan at baseline and follow-up (average, 25-month interval). During the fMRI scan, both emotional and nonemotional words were presented as a block design. Results were compared with a pair of healthy control group (n = 13). Patients showed a decreased activation at follow-up fMRI in amygdala (F = 4.69; p = 0.04) and hippocampus (F = 5.03; p = 0.03) compared with controls. Middle frontal gyrus was the only area that showed a substantial increased activation in patients (F = 4.53; p = 0.04). A great heterogeneity in individual activation patterns was also found. These results support the relevance of the type of paradigm in neuroimaging for psychosis. This is, as far as we know, the first longitudinal study with an emotional auditory paradigm in FEP. Our results suggested that the amygdala and hippocampus play a key role in psychotic disease. More studies are needed to understand the heterogeneity of response at individual level

    The Role of Imaging Biomarkers in the Assessment of Sarcopenia

    Get PDF
    The diagnosis of sarcopenia through clinical assessment has some limitations. The literature advises studies that include objective markers along with clinical assessment in order to improve the sensitivity and specificity of current diagnostic criteria. The decrease of muscle quality precedes the loss of quantity, so we studied the role magnetic resonance imaging biomarkers as indicators of the quantity and quality of muscle in sarcopenia patients.This work was supported by a grant from Universidad Católica de Valencia San Vicente Mártir (grant number 2018-158-002) to APM. JBI is in receipt of a Generalitat Valenciana doctoral fellowship (grant number ACIF 2017/126. The APC was funded by Universidad Católica de Valencia San Vicente Mártir.Medicin

    FOXP2 expression and gray matter density in the male brains of patients with schizophrenia

    Get PDF
    Common genetic variants of FOXP2 may contribute to schizophrenia vulnerability, but controversial results have been reported for this proposal. Here we evaluated the potential impact of the common FOXP2 rs2396753 polymorphism in schizophrenia. It was previously reported to be part of a risk haplotype for this disease and to have significant effects on gray matter concentration in the patients. We undertook the first examination into whether rs2396753 affects the brain expression of FOXP2 and a replication study of earlier neuroimaging findings of the influence of this genetic variant on brain structure. FOXP2 expression levels were measured in postmortem prefrontal cortex samples of 84 male subjects (48 patients and 36 controls) from the CIBERSAM Brain and the Stanley Foundation Array Collections. High-resolution anatomical magnetic resonance imaging was performed on 79 male subjects (61 patients, 18 controls) using optimized voxel-based morphometry. We found differences in FOXP2 expression and brain morphometry depending on the rs2396753, relating low FOXP2 mRNA levels with reduction of gray matter density. We detected an interaction between rs2396753 and the clinical groups, showing that heterozygous patients for this polymorphism have gray matter density decrease and low FOXP2 expression comparing with the heterozygous controls.This study shows the importance of independent replication of neuroimaging genetic studies of FOXP2 as a candidate gene in schizophrenia. Furthermore, our results suggest that the FOXP2 rs2396753 affects mRNA levels, thus providing new knowledge about its significance as a potential susceptibility polymorphism in schizophrenia

    Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

    Full text link
    [EN] Purpose: To systematically review evidence regarding the association of multi-parametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. Materials and Methods: Scopus database was searched for original journal papers from January 1st, 2007 to February 20th , 2017 according to PRISMA. Four hundred forty-nine abstracts of papers were reviewed and scored independently by two out of six authors. Based on those papers we analyzed associations between biomarkers, subcompartments within the tumor lesion, and clinical outcomes. From all the articles analyzed, the twenty-seven papers with the highest scores were highlighted to represent the evidence about MR imaging biomarkers associated with clinical outcomes. Similarly, eighteen studies defining subcompartments within the tumor region were also highlighted to represent the evidence of MR imaging biomarkers. Their reports were critically appraised according to the QUADAS-2 criteria. Results: It has been demonstrated that multi-parametric biomarkers are prepared for surrogating diagnosis, grading, segmentation, overall survival, progression-free survival, recurrence, molecular profiling and response to treatment in gliomas. Quantifications and radiomics features obtained from morphological exams (T1, T2, FLAIR, T1c), PWI (including DSC and DCE), diffusion (DWI, DTI) and chemical shift imaging (CSI) are the preferred MR biomarkers associated to clinical outcomes. Subcompartments relative to the peritumoral region, invasion, infiltration, proliferation, mass effect and pseudo flush, relapse compartments, gross tumor volumes, and high-risk regions have been defined to characterize the heterogeneity. For the majority of pairwise cooccurrences, we found no evidence to assert that observed co-occurrences were significantly different from their expected co-occurrences (Binomial test with False Discovery Rate correction, alpha=0.05). The co-occurrence among terms in the studied papers was found to be driven by their individual prevalence and trends in the literature. Conclusion: Combinations of MR imaging biomarkers from morphological, PWI, DWI and CSI exams have demonstrated their capability to predict clinical outcomes in different management moments of gliomas. Whereas morphologic-derived compartments have been mostly studied during the last ten years, new multi-parametric MRI approaches have also been proposed to discover specific subcompartments of the tumors. MR biomarkers from those subcompartments show the local behavior within the heterogeneous tumor and may quantify the prognosis and response to treatment of gliomas.This work was supported by the Spanish Ministry for Investigation, Development and Innovation project with identification number DPI2016-80054-R.Oltra-Sastre, M.; Fuster García, E.; Juan -Albarracín, J.; Sáez Silvestre, C.; Perez-Girbes, A.; Sanz-Requena, R.; Revert-Ventura, A.... (2019). Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review. Current Medical Imaging Reviews. 15(10):933-947. https://doi.org/10.2174/1573405615666190109100503S9339471510Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117Gerlinger M.; Rowan A.J.; Horswell S.; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012,366(10),883-892Sottoriva A.; Spiteri I.; Piccirillo S.G.M.; Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013,110(10),4009-4014Whiting P.F.; Rutjes A.W.; Westwood M.E.; QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011,155(8),529-536Stupp R.; Mason W.P.; van den Bent M.J.; Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005,352(10),987-996Ponte K.F.; Berro D.H.; Collet S.; In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017,58(10),1574-1579Pope W.B.; Kim H.J.; Huo J.; Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009,252(1),182-189Mörén L.; Bergenheim A.T.; Ghasimi S.; Brännström T.; Johansson M.; Antti H.; Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015,5(3),502-520Prager A.J.; Martinez N.; Beal K.; Omuro A.; Zhang Z.; Young R.J.; Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015,36(5),877-885Kickingereder P.; Burth S.; Wick A.; Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016,280(3),880-889Yoo R-E.; Choi S.H.; Cho H.R.; Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013,38(4),852-860Liberman G.; Louzoun Y.; Aizenstein O.; Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013,82(2),e87-e94Ramadan S.; Andronesi O.C.; Stanwell P.; Lin A.P.; Sorensen A.G.; Mountford C.E.; Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011,259(2),540-549Xintao H.; Wong K.K.; Young G.S.; Guo L.; Wong S.T.; Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011,33(2),296Ingrisch M.; Schneider M.J.; Nörenberg D.; Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017,52(6),360-366Ulyte A.; Katsaros V.K.; Liouta E.; Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016,58(12),1197-1208O’Neill A.F.; Qin L.; Wen P.Y.; de Groot J.F.; Van den Abbeele A.D.; Yap J.T.; Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016,130(3),495-503Kickingereder P.; Bonekamp D.; Nowosielski M.; Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016,281(3),907-918Roberto S-R.; Antonio R-V.; Luis M-B.; Angel A-B.; Gracián G-M.; Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013,23(12),3456-3465Jain R.; Poisson L.; Narang J.; Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013,267(1),212-220Fathi K.A.; Mohseni M.; Rezaei S.; Bakhshandehpour G.; Saligheh R.H.; Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015,28(1),13-22Caulo M.; Panara V.; Tortora D.; Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014,272(2),494-503Alexiou G.A.; Zikou A.; Tsiouris S.; Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014,32(7),854-859Van Cauter S.; De Keyzer F.; Sima D.M.; Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014,16(7),1010-1021Seeger A.; Braun C.; Skardelly M.; Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013,20(12),1557-1565Chawalparit O.; Sangruchi T.; Witthiwej T.; Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013,96(10),1365-1373Li Y.; Lupo J.M.; Parvataneni R.; Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013,15(5),607-617Shankar J.J.S.; Woulfe J.; Silva V.D.; Nguyen T.B.; Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013,200(5)Zinn P.O.; Mahajan B.; Sathyan P.; Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011,6(10)Matsusue E.; Fink J.R.; Rockhill J.K.; Ogawa T.; Maravilla K.R.; Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010,52(4),297-306Juan-Albarracín J.; Fuster-Garcia E.; Manjón J.V.; Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015,10(5)Itakura H.; Achrol A.S.; Mitchell L.A.; Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015,7(303)Ion-Margineanu A.; Van Cauter S.; Sima D.M.; Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015,2015Durst C.R.; Raghavan P.; Shaffrey M.E.; Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014,56(2),107-115Yoon J.H.; Kim J.H.; Kang W.J.; Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014,24(2),380-389Demerath T.; Simon-Gabriel C.P.; Kellner E.; Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017,30(1),36-47Qin L.; Li X.; Stroiney A.; Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017,59(2),135-145Boult J.K.R.; Borri M.; Jury A.; Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016,29(11),1608-1617Server A.; Kulle B.; Gadmar Ø.B.; Josefsen R.; Kumar T.; Nakstad P.H.; Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011,80(2),462-470Chang P.D.; Chow D.S.; Yang P.H.; Filippi C.G.; Lignelli A.; Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017,208(1),57-65Yi C.; Shangjie R.; Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017,27,3583-3592Khalifa J.; Tensaouti F.; Chaltiel L.; Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016,26(11),4194-4203Prateek P.; Jay P.; Partovi S.; Madabhushi A.; Tiwari P.; Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017,27(10),4188-4197Lemasson B.; Chenevert T.L.; Lawrence T.S.; Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013,6(6),766-774Inano R.; Oishi N.; Kunieda T.; Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016,6,30344Delgado-Goñi T.; Ortega-Martorell S.; Ciezka M.; MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016,29(6),732-743Cui Y.; Tha K.K.; Terasaka S.; Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016,278(2),546-553Price S.J.; Young A.M.H.; Scotton W.J.; Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016,43(2),487-494Sauwen N.; Acou M.; Van Cauter S.; Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016,12,753-764Jena A.; Taneja S.; Gambhir A.; Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016,41(5),e228-e236Kim H.S.; Goh M.J.; Kim N.; Choi C.G.; Kim S.J.; Kim J.H.; Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014,273(3),831-843Christoforidis G.A.; Yang M.; Abduljalil A.; “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012,264(1),210-217Wang S.; Kim S.; Chawla S.; Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011,32(3),507-514Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674Macdonald D.R.; Cascino T.L.; Schold S.C.; Cairncross J.G.; Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990,8(7),1277-1280Wen P.Y.; Macdonald D.R.; Reardon D.A.; Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010,28(11),1963-1972Sorensen A.G.; Batchelor T.T.; Wen P.Y.; Zhang W-T.; Jain R.K.; Response criteria for glioma. Nat Clin Pract Oncol 2008,5(11),634-644Rosenkrantz A.B.; Friedman K.; Chandarana H.; Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016,206(1),162-172Castiglioni I.; Gallivanone F.; Canevari C.; Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016,12,106Mainta I.C.; Perani D.; Delattre B.M.A.; FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017,14,186-197Marner L.; Henriksen O.M.; Lundemann M.; Larsen V.A.; Law I.; Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017,5(2),135-149R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from: https://www.R-project.org

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    Methodological developments and clinical applications of pharmacokinetic models in contrast-enhanced magnetic resonance perfusion studies

    Full text link
    La angiogénesis y la neovascularización son procesos biológicos que tienen lugar en los tejidos y que están asociados al aumento de las demandas de oxígeno y nutrientes. En adultos normales estos procesos no suelen ocurrir. Sin embargo, en condiciones de enfermedad, como en inflamaciones o en el desarrollo de tumores, el VEGF (factor de crecimiento vascular endotelial, del inglés vascular endothelial growth factor), ls proteína señalizadora causante de la angiogénesis,está fuertemente expresada. En estas circunstancias se formas rápidamente nuevos vasos y capilares. Esta nueva red vascular es caótica y no presenta una estructura normal, especialmente en el caso de tumores. La cuantificación de la angiogénesis es esencial para evaluar el grado de agresividad de un tumor y la eficacia de los tratamientos. Es necesario desarrollar herramientas fiables y reproducibles que sean sensibles a cambios tempranos, lo cual puede permitir utilizar tratamientos más individualizados. En este sentido, el modelado farmacocinético de imágenes de perfusión por resonancia magnética (RM) es una valiosa herramienta para la evaluación de parámetros como la permeabilidad capilar, el coeficiente de extracción, el volumen intersiticial y el volumen vascular.Sanz Requena, R. (2010). Methodological developments and clinical applications of pharmacokinetic models in contrast-enhanced magnetic resonance perfusion studies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8422Palanci

    Semi-automated Knee Joint Segmentation from Magnetic Resonance Images based on a Subchondral Bone Approach

    No full text
    Abstract: The aim of this paper is to present the development of a semi-automatic segmentation method for human knee cartilage and bones from magnetic resonance images (MRI). This segmentation process belongs to a higher aim that consists of a 3D simulation of knee joint to find how stresses are distributed in contact regions between cartilages and to quantify them as well as the contact region size. Imaging acquisition was performed in a 3T scanner with high spatial resolution (voxel size 0.293 x 0.293 x 1 mm). This method consists of a 2D segmentation of each sagittal plane and a reconstruction of the volumetric image with the segmented masks

    Radiographic assessment of pectoral flipper bone maturation in bottlenose dolphins (Tursiops truncatus), as a novel technique to accurately estimate chronological age.

    No full text
    Accurate age estimation in wildlife conservation is an important diagnostic tool in the interpretation of biological data, necropsy examination, reproductive status and population demographics. The most frequently utilized methods to age bottlenose dolphins (Tursiops truncatus) include tooth extraction; counting dental growth layer groups and dental radiography. These methods are inaccurate in dolphins > 13 years old, due to overlapping of the growth layer groups in dolphins and worn teeth. Establishing a non-invasive method of accurately aging bottlenose dolphins across the entire age range is important to long term conservation efforts to understand health status, lifespan, reproduction and survivability. A database of 126 radiographs from 94 dolphins of known chronological age was utilized to establish the stages of skeletal ossification over time. A numerical score from -1 to 8 was assigned to 16 anatomic locations on the pectoral radiograph, to create a formula to estimate age. The most informative areas to evaluate morphologically were the metaphyseal regions of the radius and ulna, and the proximal and distal epiphysis of metacarpals II and III. Third order polynomial regression calculated separate age predictor formulas for male and female dolphins, with females reaching sexual maturity earlier than males. Completion of epiphyseal closure of the long bones correlated with average sexual maturity. Managed care dolphin ages could be properly estimated with decreasing precision from within 3 months in animals 30 years old. This diagnostic tool could also be applied to diagnose atypical ossification patterns consistent with nutritional, developmental or growth abnormalities, and identifying subclinical health issues. In conclusion, knowledge of the lifespan and the onset of sexual maturity for each species will allow this model to be applied to other cetaceans, facilitating age estimation via pectoral radiography in future research
    corecore