2,525 research outputs found

    Slow crack growth in polycarbonate films

    Get PDF
    We study experimentally the slow growth of a single crack in polycarbonate films submitted to uniaxial and constant imposed stress. The specificity of fracture in polycarbonate films is the appearance of flame shaped macroscopic process zones at the tips of the crack. Supported by an experimental study of the mechanical properties of polycarbonate films, an analysis of the stress dependence of the mean ratio between the process zone and crack lengths, during the crack growth, show a quantitative agreement with the Dugdale-Barenblatt model of the plastic process zone. We find that the fracture growth curves obey strong scaling properties that lead to a well defined growth master curve

    Attractive and repulsive cracks in a heterogeneous material

    Full text link
    We study experimentally the paths of an assembly of cracks growing in interaction in a heterogeneous two-dimensional elastic brittle material submitted to uniaxial stress. For a given initial crack assembly geometry, we observe two types of crack path. The first one corresponds to a repulsion followed by an attraction on one end of the crack and a tip to tip attraction on the other end. The second one corresponds to a pure attraction. Only one of the crack path type is observed in a given sample. Thus, selection between the two types appears as a statistical collective process.Comment: soumis \`a JSTA

    Discrepancy between sub-critical and fast rupture roughness: a cumulant analysis

    Full text link
    We study the roughness of a crack interface in a sheet of paper. We distinguish between slow (sub-critical) and fast crack growth regimes. We show that the fracture roughness is different in the two regimes using a new method based on a multifractal formalism recently developed in the turbulence literature. Deviations from monofractality also appear to be different in both regimes

    Three-dimensional foam flow resolved by fast X-ray tomographic microscopy

    Get PDF
    Thanks to ultra fast and high resolution X-ray tomography, we managed to capture the evolution of the local structure of the bubble network of a 3D foam flowing around a sphere. As for the 2D foam flow around a circular obstacle, we observed an axisymmetric velocity field with a recirculation zone, and indications of a negative wake downstream the obstacle. The bubble deformations, quantified by a shape tensor, are smaller than in 2D, due to a purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able to detect plastic rearrangements, characterized by the neighbor-swapping of four bubbles. Their spatial structure suggest that rearrangements are triggered when films faces get smaller than a characteristic area.Comment: 5 pages, 5 figure

    Sound and light from fractures in scintillators

    Full text link
    Prompted by intriguing events observed in certain particle-physics searches for rare events, we study light and acoustic emission simultaneously in some inorganic scintillators subject to mechanical stress. We observe mechanoluminescence in Bi4Ge3O12{Bi}_4{Ge}_{3}{O}_{12}, CdWO4{CdWO}_{4} and ZnWO4{ZnWO}_{4}, in various mechanical configurations at room temperature and ambient pressure. We analyze how the light emission is correlated to acoustic emission during fracture. For Bi4Ge3O12{Bi}_4{Ge}_{3}{O}_{12}, we set a lower bound on the energy of the emitted light, and deduce that the fraction of elastic energy converted to light is at least 3×10−53 \times 10^{-5}

    Roughness of tensile crack fronts in heterogenous materials

    Full text link
    The dynamics of planar crack fronts in heterogeneous media is studied using a recently proposed stochastic equation of motion that takes into account nonlinear effects. The analysis is carried for a moving front in the quasi-static regime using the Self Consistent Expansion. A continuous dynamical phase transition between a flat phase and a dynamically rough phase, with a roughness exponent ζ=1/2\zeta=1/2, is found. The rough phase becomes possible due to the destabilization of the linear modes by the nonlinear terms. Taking into account the irreversibility of the crack propagation, we infer that the roughness exponent found in experiments might become history-dependent, and so our result gives a lower bound for ζ\zeta.Comment: 7 page

    A local field emission study of partially aligned carbon-nanotubes by AFM probe

    Full text link
    We report on the application of Atomic Force Microscopy (AFM) for studying the Field Emission (FE) properties of a dense array of long and vertically quasi-aligned multi-walled carbon nanotubes grown by catalytic Chemical Vapor Deposition on a silicon substrate. The use of nanometric probes enables local field emission measurements allowing investigation of effects non detectable with a conventional parallel plate setup, where the emission current is averaged on a large sample area. The micrometric inter-electrode distance let achieve high electric fields with a modest voltage source. Those features allowed us to characterize field emission for macroscopic electric fields up to 250 V/μ\mum and attain current densities larger than 105^5 A/cm2^2. FE behaviour is analyzed in the framework of the Fowler-Nordheim theory. A field enhancement factor γ≈\gamma \approx 40-50 and a turn-on field Eturn−on∼E_{turn-on} \sim15 V/μ\mum at an inter-electrode distance of 1 μ\mum are estimated. Current saturation observed at high voltages in the I-V characteristics is explained in terms of a series resistance of the order of MΩ\Omega. Additional effects as electrical conditioning, CNT degradation, response to laser irradiation and time stability are investigated and discussed

    Chronography of the Milky Way's Halo System with Field Blue Horizontal-Branch Stars

    Get PDF
    In a pioneering effort, Preston et al. reported that the colors of blue horizontal-branch (BHB) stars in the halo of the Galaxy shift with distance, from regions near the Galactic center to about 12 kpc away, and interpreted this as a correlated variation in the ages of halo stars, from older to younger, spanning a range of a few Gyrs. We have applied this approach to a sample of some 4700 spectroscopically confirmed BHB stars selected from the Sloan Digital Sky Survey to produce the first "chronographic map" of the halo of the Galaxy. We demonstrate that the mean de-reddened g−-r color, , increases outward in the Galaxy from −-0.22 to −-0.08 (over a color window spanning [−-0.3:0.0]) from regions close to the Galactic center to ~40 kpc, independent of the metallicity of the stars. Models of the expected shift in the color of the field BHB stars based on modern stellar evolutionary codes confirm that this color gradient can be associated with an age difference of roughly 2-2.5 Gyrs, with the oldest stars concentrated in the central ~15 kpc of the Galaxy. Within this central region, the age difference spans a mean color range of about 0.05 mag (~0.8 Gyrs). Furthermore, we show that chronographic maps can be used to identify individual substructures, such as the Sagittarius Stream, and overdensities in the direction of Virgo and Monoceros, based on the observed contrast in their mean BHB colors with respect to the foreground/background field population.Comment: 6 pages, 4 figures, ApJ letter
    • …
    corecore