611 research outputs found
Performance Assessment of ESP8266 Wireless Mesh Networks
This paper presents a wireless mesh network testbed based on ESP8266 devices using painlessMesh library. It evaluates its feasibility and potential effectiveness as a solution to monitor perishable goods, such as fresh fruit and vegetables, which are often stored and transported inside refrigerated containers. Performance testing experiments with different numbers of nodes and traffic loads and different message payload sizes are conducted under unicast transmission. The impact on network performance is evaluated in terms of delivery ratio and delivery delay, which, consequently, affect the energy consumption and, hence, network lifetime. The results of this investigation are an important contribution to help researchers to propose mechanisms, schemes, and protocols to improve performance in such challenging networks.info:eu-repo/semantics/publishedVersio
Improving the stability of the friction stir channelling technology via a cooled copper backing plate
Funding Information:
Open access funding provided by FCT|FCCN (b-on). The authors acknowledge UNIDEMI for its financial support.
Publisher Copyright:
© 2023, The Author(s).Abstract: The development of the friction stir channelling (FSC) technology has a potential to revolutionize the manufacturing industry, providing an innovative way to produce continuous sub-surface channels in monolithic components in a single step. However, the process generates heat that can lead to defects and loss of stationarity, affecting the quality of the channels produced and the process’ efficiency and control. To address these challenges, a ground-breaking study was conducted using a cooled copper backing plate to adjust the process temperatures and investigate the influence of the temperature on FSC stability. The results of the study showed that the cooled copper backing plate has a significantly higher rate of heat conduction, effectively preventing the processed component from overheating and ensuring that the process maintains its stationarity. When using the steel backing plate, only one combination of process parameters (a rotation speed of 450 rev/min and a traverse speed of 71 mm/min) yielded satisfactory results. Moreover, the use of the cooled copper backing plate allowed for a wider range of process parameters to be employed, resulting in sub-surface channels with higher quality and fewer defects. The 710/71 parameters combination resulted in a lower heat input, while the 900/45 parameters set produced channels with a more rectangular geometry. A rotation speed of 900 rev/min and a traverse speed of 45 mm/min have been shown to be the best choice. This innovative approach to FSC technology represents a major step forward in solid-state manufacturing, envisaging new possibilities for producing longer sub-surface channels with superior quality and greater efficiency. Highlights: • Conducting the FSC process at low temperature has improved its stability. • The use of a cooled copper backing plate enabled a broader range of FSC process parameters. • Longer and stabler leak-free sub-surface channels have been produced in aluminium alloys. Graphical Abstract: [Figure not available: see fulltext.]publishersversionpublishe
Analysis of the dynamic air conditioning loads, fuel consumption and emissions of heavy-duty trucks with different glazing and paint optical properties
The European transportation sector employs 10 million people and accounts for 4.6% of the European Union GDP. Due to climate change, this workforce is increasingly affected by high temperatures and radiant loads, particularly during summer. They rely on air conditioning (AC) to minimize heat inside the truck cabins, increasing fuel consumption and tailpipe emissions. Because sustainable transportation is crucial for climate change mitigation, we developed a numerical investigation on the dynamic thermal exchanges of cabins of heavy-duty trucks in realistic conditions of a summer workday, to quantify the potential impact of interventions in the glazing and paint optical properties, over the truck AC loads. We observed that the changes in air temperature and solar irradiation throughout the workday imply substantial variations in the truck's AC loads and, consequently, in its fuel consumption and tailpipe emissions. Furthermore, windshields and side windows with transmissivity of 0.33 instead of typical 0.79 and 0.84, respectively, can reduce AC loads by up to 16%. External paints with reflectivity of 0.70 instead of 0.04 can reduce the AC loads by up to 30%, whereas cumulative changes to glazing and paint can reduce the AC load by up to 40%. These interventions can lower fuel consumption and emissions by up to 0.4%. These results show that important improvements in fuel efficiency and tailpipe emissions are possible, if the research community, policy makers and industry stakeholders successfully promote the adaptation of the European transportation fleet
In-situ hot forging directed energy deposition-arc of CuAl8 alloy
Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). VD acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/139454/2018 . TAR acknowledges Portuguese Fundação para a Ciência e a Tecnologia ( FCT - MCTES ) for funding the PhD grant SFRH/BD/144202/2019 . Funding of CENIMAT/i3N by national funds through the Portuguese Fundação para a Ciência e a Tecnologia, I.P., within the scope of Multiannual Financing of R&D Units , reference UIDB/50025/2020–2023 is also acknowledge. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 research and innovation programme. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020 . This project has received funding from the EU-H2020 research and innovation programme under grant agreement No 654360 having benefitted from the access provided by PETRA III at DESY in Hamburg, Germany within the framework of the NFFA-Europe Transnational Access Activity. The authors acknowledge support by OCAS NV and GUARENTEED via Joachim Antonissen. Funding Information: Authors acknowledge the Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for its financial support via the project UID/EMS/00667/2019 (UNIDEMI). VD acknowledges Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for funding the PhD grant SFRH/BD/139454/2018. TAR acknowledges Portuguese Fundação para a Ciência e a Tecnologia (FCT - MCTES) for funding the PhD grant SFRH/BD/144202/2019. Funding of CENIMAT/i3N by national funds through the Portuguese Fundação para a Ciência e a Tecnologia, I.P. within the scope of Multiannual Financing of R&D Units, reference UIDB/50025/2020–2023 is also acknowledge. This activity has received funding from the European Institute of Innovation and Technology (EIT) Raw Materials through the project Smart WAAM: Microstructural Engineering and Integrated Non-Destructive Testing. This body of the European Union receives support from the European Union's Horizon 2020 research and innovation programme. Parts of this research were carried out at PETRA III at DESY, a member of the Helmholtz Association. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. This project has received funding from the EU-H2020 research and innovation programme under grant agreement No 654360 having benefitted from the access provided by PETRA III at DESY in Hamburg, Germany within the framework of the NFFA-Europe Transnational Access Activity. The authors acknowledge support by OCAS NV and GUARENTEED via Joachim Antonissen. Remark: The supplementary material is temporarily available in the Drive folder here: https://drive.google.com/drive/folders/1SFFlhJlmL5p3IkQis8cB6UVWva3wozGi?usp=sharing. Publisher Copyright: © 2022 Elsevier B.V.CuAl8 alloy finds applications in industrial components, where a good anti-corrosion and anti-wearing properties are required. The alloy has a medium strength and a good toughness with an elongation to fracture at room temperature of about 40%. Additionally, it has a good electrical conductivity, though lower than that of pure Al or pure Cu. Despite these characteristics, additive manufacturing of the CuAl8 alloy was not yet reported. In this work, the direct energy deposition-arc (DED-arc) with and without in-situ hot forging was used to determine the microstructure evolution and mechanical properties. No internal defects were seen on the parts produced. Hot forging combined with DED-arc was seen to reduce and homogenize the grain size, improve mechanical strength and isotropy of mechanical properties. Moreover, the use of this novel DED-arc variant was seen to reduce the magnitude of residual stresses throughout the fabricated part. We highlight that this alloy can be processed by DED-arc, and the hot forging operation concomitant with the material deposition has beneficial effects on the microstructure refinement and homogenization.publishersversionpublishe
SiO2·p-TSA: a green catalyst for solvent-free tetrahydropyranylation of alcohols and thiols
A solvent-free procedure for tetrahydropyranylation of alcohols and thiols based on a simple grinding of the reagents in the presence of silica gel and catalytic amounts of p-TSA is described
Embedded fiber sensors to monitor temperature and strain of polymeric parts fabricated by additive manufacturing and reinforced with NiTi wires
POCI-01-0145-FEDER-016414 (FIBR3D) BI/UI96/6642/2018 BI/UI96/6643/2018 PD/BD/128265/2016 UID/CTM/50025/2019 UIDB/00667/2020 FCT-SFRH/BD/146885/2019 UIDB/50025/2020 UIDP/50025/2020This paper focuses on three main issues regarding Material Extrusion (MEX) Additive Manufacturing (AM) of thermoplastic composites reinforced by pre-functionalized continuous Nickel–Titanium (NiTi) wires: (i) Evaluation of the effect of the MEX process on the properties of the pre-functionalized NiTi, (ii) evaluation of the mechanical and thermal behavior of the composite material during usage, (iii) the inspection of the parts by Non-Destructive Testing (NDT). For this purpose, an optical fiber sensing network, based on fiber Bragg grating and a cascaded optical fiber sensor, was successfully embedded during the 3D printing of a polylactic acid (PLA) matrix reinforced by NiTi wires. Thermal and mechanical perturbations were successfully registered as a consequence of thermal and mechanical stimuli. During a heating/cooling cycle, a maximum contraction of ≈100 µm was detected by the cascaded sensor in the PLA material at the end of the heating step (induced by Joule effect) of NiTi wires and a thermal perturbation associated with the structural transformation of austenite to R-phase was observed during the natural cooling step, near 33.0◦ C. Regarding tensile cycling tests, higher increases in temperature arose when the applied force ranged between 0.7 and 1.1 kN, reaching a maximum temperature variation of 9.5 ± 0.1◦ C. During the unload step, a slope change in the temperature behavior was detected, which is associated with the material transformation of the NiTi wire (martensite to austenite). The embedded optical sensing methodology presented here proved to be an effective and precise tool to identify structural transformations regarding the specific application as a Non-Destructive Testing for AM.publishersversionpublishe
The use of ionic liquids in the processing of chitosan/silk hydrogels for biomedical applications
Natural polymers are adequate renewable resources for the processability of well-defined architectures for
several applications. Combinations of polysaccharides and proteins may mimic the naturally occurring
environment of certain tissues. The main goal of this work renders the application of green chemistry
principles, namely the use of ionic liquids (ILs) and biorenewable sources, such as chitosan (CHT) and
silkfibroin (SF), to process new hydrogel-based constructs. Although the solubilization of both materials
in ILs has been studied individually, this work reports, for the first time, the role of ILs as solvent, for the
production of hydrogels from blends of chitosan and silkfibroin (CSF). These systems offer the
advantage of being homogeneous and presenting easy and short dissolution time of both
biomacromolecules. Moreover, the use of chitosan obtained fromα- andβ-chitin allowed the production
of blended hydrogels with distinct physical–chemical properties.In vitroassays demonstrated that these
hydrogels supported the adhesion and growth of primary human dermalfibroblasts. Taken these
properties together, the CSF hydrogels might be promising biomaterials to be explored for skin tissue
engineering approaches.Fundação para a Ciência e a Tecnologia FCT - SFRH/BPD/45307/2008, SFRH/BPD/
34704/2007, SFRH/BD/64601/2009, PTDC/QUI/68804/2006FEDER - POCTEP 0330_IBEROMARE_1_P
- …