3,750 research outputs found

    The pressor effect of angiotensin-(1-7) in the rat rostral ventrolateral medulla involves multiple peripheral mechanisms

    Get PDF
    OBJECTIVE: In the present study, the peripheral mechanism that mediates the pressor effect of angiotensin-(1-7) in the rostral ventrolateral medulla was investigated. METHOD: Angiotensin-(1-7) (25 pmol) was bilaterally microinjected in the rostral ventrolateral medulla near the ventral surface in urethane-anesthetized male Wistar rats that were untreated or treated (intravenously) with effective doses of selective autonomic receptor antagonists (atenolol, prazosin, methyl-atropine, and hexamethonium) or a vasopressin V1 receptor antagonist [d(CH2)5 -Tyr(Me)-AVP] given alone or in combination. RESULTS: Unexpectedly, the pressor response produced by angiotensin-(1-7) (16 ± 2 mmHg, n = 12), which was not associated with significant changes in heart rate, was not significantly altered by peripheral treatment with prazosin, the vasopressin V1 receptor antagonist, hexamethonium or methyl-atropine. Similar results were obtained in experiments that tested the association of prazosin and atenolol; methyl-atropine and the vasopressin V1 antagonist or methyl-atropine and prazosin. Peripheral treatment with the combination of prazosin, atenolol and the vasopressin V1 antagonist abolished the pressor effect of glutamate; however, this treatment produced only a small decrease in the pressor effect of angiotensin-(1-7) at the rostral ventrolateral medulla. The combination of hexamethonium with the vasopressin V1 receptor antagonist or the combination of prazosin, atenolol, the vasopressin V1 receptor antagonist and methyl-atropine was effective in blocking the effect of angiotensin-(1-7) at the rostral ventrolateral medulla. CONCLUSION: These results indicate that angiotensin-(1-7) triggers a complex pressor response at the rostral ventrolateral medulla that involves an increase in sympathetic tonus, release of vasopressin and possibly the inhibition of a vasodilatory mechanism

    Angiotensin-(1-7)-Mediated Signaling in Cardiomyocytes

    Get PDF
    The Renin-Angiotensin System (RAS) acts at multiple targets and has its synthesis machinery present in different tissues, including the heart. Actually, it is well known that besides Ang II, the RAS has other active peptides. Of particular interest is the heptapeptide Ang-(1-7) that has been shown to exert cardioprotective effects. In this way, great compilations about Ang-(1-7) actions in the heart have been presented in the literature. However, much less information is available concerning the Ang-(1-7) actions directly in cardiomyocytes. In this paper, we show the actual knowledge about Ang-(1-7)-mediated signaling in cardiac cells more specifically we provide a brief overview of ACE2/Ang-(1-7)/Mas axis; and highlight the discoveries made in cardiomyocyte physiology through the use of genetic approaches. Finally, we discuss the protective signaling induced by Ang-(1-7) in cardiomyocytes and point molecular determinants of these effects

    Update on the Role of Cannabinoid Receptors after Ischemic Stroke

    Get PDF
    Cannabinoids are considered as key mediators in the pathophysiology of inflammatory diseases, including atherosclerosis. In particular, they have been shown to reduce the ischemic injury after acute cardiovascular events, such as acute myocardial infarction and ischemic stroke. These protective and anti-inflammatory properties on peripheral tissues and circulating inflammatory have been demonstrated to involve their binding with both selective cannabinoid type 1 (CB1) and type 2 (CB2) transmembrane receptors. On the other hands, the recent discoveries of novel different classes of cannabinoids and receptors have increased the complexity of this system in atherosclerosis. Although only preliminary data have been reported on the activities of novel cannabinoid receptors, several studies have already investigated the role of CB1 and CB2 receptors in ischemic stroke. While CB1 receptor activation has been shown to directly reduce atherosclerotic plaque inflammation, controversial data have been shown on neurotransmission and neuroprotection after stroke. Given its potent anti-inflammatory activities on circulating leukocytes, the CB2 activation has been proven to produce protective effects against acute poststroke inflammation. In this paper, we will update evidence on different cannabinoid-triggered avenues to reduce inflammation and neuronal injury in acute ischemic stroke

    Angiotensin-(1-7): an anti-inflammatory and pro-resolutive peptide

    Get PDF
    In recent decades the renin-angiotensin system has been established itself as a complex regulatory mechanism composed of different pathways involved in the control of physiological functions and, when for long term inappropriately activated, it is involved in the pathophysiology of different diseases. Among its biologically active peptides, angiotensin-(1-7) and its receptor Mas, represent an important counter-regulatory mechanism due to their antihypertensive, anti-inflammatory, anti-proliferative and antifibrotic effects. In this review, we present data that besides demonstrating the antiinflammatory effect, indicate that angiotensin-(1-7) has a crucial additional effect on the return to tissue homeostasis, that is to promote resolution of the inflammatory process. These studies point angiotensin-(1-7) or activation of Mas receptor as important therapeutic targets for the treatment of inflammatory diseases.En las últimas décadas, el sistema renina-angiotensina se ha establecido como un mecanismo regulador complejo compuesto de diferentes vías involucradas no solo en el control de funciones fisiológicas sino también en la fisiopatología de diferentes enfermedades cuando se activa de manera inapropiada y a largo plazo. Entre sus péptidos biológicamente activos, la angiotensina-(1-7) y su receptor Mas representan un mecanismo contrarregulador importante debido a efectos antihipertensivos, antiinflamatorios, antiproliferativos y antifibróticos. En esta revisión presentamos datos que, además de demostrar el efecto antiinflamatorio, indican que la angiotensina-(1-7) tiene un efecto adicional crucial en el retorno a la homeostasis del tejido, que es promover la resolución del proceso inflamatorio. Estos estudios apuntan a la angiotensina-(1-7) y/o la activación del receptor Mas, como importantes blancos terapéuticos para el tratamiento de enfermedades inflamatorias.Sociedad Argentina de Fisiologí

    New Cardiovascular and Pulmonary Therapeutic Strategies Based on the Angiotensin-Converting Enzyme 2/Angiotensin-(1–7)/Mas Receptor Axis

    Get PDF
    Angiotensin (Ang)-(1–7) is now recognized as a biologically active component of the renin-angiotensin system (RAS). The discovery of the angiotensin-converting enzyme homologue ACE2 revealed important metabolic pathways involved in the Ang-(1–7) synthesis. This enzyme can form Ang-(1–7) from Ang II or less efficiently through hydrolysis of Ang I to Ang-(1–9) with subsequent Ang-(1–7) formation. Additionally, it is well established that the G protein-coupled receptor Mas is a functional ligand site for Ang-(1–7). The axis formed by ACE2/Ang-(1–7)/Mas represents an endogenous counter regulatory pathway within the RAS whose actions are opposite to the vasoconstrictor/proliferative arm of the RAS constituted by ACE/Ang II/AT1 receptor. In this review we will discuss recent findings concerning the biological role of the ACE2/Ang-(1–7)/Mas arm in the cardiovascular and pulmonary system. Also, we will highlight the initiatives to develop potential therapeutic strategies based on this axis

    An orally active formulation of angiotensin-(1-7) produces an antithrombotic effect

    Get PDF
    INTRODUCTION AND OBJECTIVE: The heptapeptide angiotensin-(1-7) is a component of the renin-angiotensin system, which promotes many beneficial cardiovascular effects, including antithrombotic activity. We have recently shown that the antithrombotic effect of angiotensin-(1-7) involves receptor Mas-mediated NO-release from platelets. Here, we describe an orally active formulation based on angiotensin-(1-7) inclusion in cyclodextrin [Ang-(1-7)- CyD] as an antithrombotic agent. Cyclodextrins are pharmaceutical tools that are used to enhance drug stability, absorption across biological barriers and gastric protection. METHOD: To test the antithrombotic effect of Ang-(1-7)-CyD, thrombus formation was induced in the abdominal vena cava of spontaneously hypertensive rats that were pretreated either acutely or chronically with Ang-(1-7)-CyD. Male Mas-knockout and wild-type mice were used to verify the role of the Mas receptor on the effect of Ang-(1-7)-CyD. RESULTS: Acute or chronic oral treatment with Ang-(1-7)-CyD promoted an antithrombotic effect (measured by thrombus weight; all values are, respectively, untreated vs. treated animals) in spontaneously hypertensive rats (acute: 2.86 + 0.43 mg vs. 1.14 + 0.40 mg; chronic: 4.27 + 1.03 mg vs. 1.39 + 0.68 mg). This effect was abolished in Mas-knockout mice (thrombus weight in Mas wild-type: 0.76 + 0.10 mg vs. 0.37 + 0.02 mg; thrombus weight in Mas-knockout: 0.96 + 0.11 mg vs. 0.87 + 0.14 mg). Furthermore, the antithrombotic effect of Ang-(1-7)-CyD was associated with an increase in the plasma level of Angiotensin-(1-7). CONCLUSION: These results show for the first time that the oral formulation Ang-(1-7)-CyD has biological activity and produces a Mas-dependent antithrombotic effect

    Disponibilidade de proteína e minerais em linhagens de feijão-caupi após o processamento térmico.

    Get PDF
    O objetivo do estudo foi avaliar a influência do processamento térmico sobre os teores de proteína e minerais em genótipos de feijão-caupi a fim de selecionar as mais promissoras para cultivo comercial que melhor preserve o percentual de disponibilidade desses nutrientes após a cocção

    Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory

    Get PDF
    AbstractIt has been shown that the brain has its own intrinsic renin–angiotensin system (RAS) and angiotensin-(1–7) (Ang-(1–7)) is particularly interesting, because it appears to counterbalance most of the Ang II effects. Ang-(1–7) exerts its biological function through activation of the G-protein-coupled receptor Mas. Interestingly, hippocampus is one of the regions with higher expression of Mas. However, the role of Ang-(1–7)/Mas axis in hippocampus-dependent memories is still poorly understood. Here we demonstrated that Mas ablation, as well as the blockade of Mas in the CA1-hippocampus, impaired object recognition memory (ORM). We also demonstrated that the blockade of Ang II receptors AT1, but not AT2, recovers ORM impairment of Mas-deficient mice. Considering that high concentrations of Ang-(1–7) may activate AT1 receptors, nonspecifically, we evaluate the levels of Ang-(1–7) and its main precursors Ang I and Ang II in the hippocampus of Mas-deficient mice. The Ang I and Ang II levels are unaltered in the whole hipocampus of MasKo. However, Ang-(1–7) concentration is increased in the whole hippocampus of MasKo mice, as well as in the CA1 area. Taken together, our findings suggest that the functionality of the Ang-(1–7)/Mas axis is essential for normal ORM processing
    corecore