16 research outputs found
A systematic review of safety data reporting in clinical trials of vaccines against malaria, tuberculosis, and human immunodeficiency virus.
INTRODUCTION: Malaria, tuberculosis (TB) and human immunodeficiency virus (HIV) are diseases with devastating effects on global public health, especially in the developing world. Clinical trials of candidate vaccines for these diseases are being conducted at an accelerating rate, and require accurate and consistent methods for safety data collection and reporting. We performed a systematic review of publications describing the safety results from clinical trials of malaria, TB and HIV vaccines, to ascertain the nature and consistency of safety data collection and reporting.
METHODS: The target for the review was pre-licensure trials for malaria, TB and HIV vaccines published in English from 2000 to 2009. Search strategies were customized for each of the databases utilized (MEDLINE, EMBASE, the Cochrane Database of Systematic Reviews and the Database of Reviews and Effects). Data extracted included age of trial participants, vaccine platform, route and method of vaccine administration, duration of participant follow-up, reporting of laboratory abnormalities, and the type, case definitions, severity, reporting methods and internal reporting consistency of adverse events.
RESULTS: Of 2278 publications screened, 124 were eligible for inclusion (malaria: 66, TB: 9, HIV: 49). Safety data reporting was found to be highly variable among publications and often incomplete: overall, 269 overlapping terms were used to describe specific adverse events. 17% of publications did not mention fever. Descriptions of severity or degree of relatedness to immunization of adverse events were frequently omitted. 26% (32/124) of publications failed to report data on serious adverse events.
CONCLUSIONS: The review demonstrated lack of standardized safety data reporting in trials for vaccines against malaria, TB and HIV. Standardization of safety data collection and reporting should be encouraged to improve data quality and comparability.
LIMITATIONS: The search strategy missed studies published in languages other than English and excluded studies reporting on vaccine trials for diseases besides malaria, TB and HIV
Human adenovirus 5-vectored Plasmodium falciparum NMRC-M3V-Ad-PfCA vaccine encoding CSP and AMA1 is safe, well-tolerated and immunogenic but does not protect against controlled human malaria infection.
BACKGROUND: In a prior study, a DNA prime / adenovirus boost vaccine (DNA/Ad) expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) (NMRC-M3V-D/Ad-PfCA Vaccine) induced 27% protection against controlled human malaria infection (CHMI). To investigate the contribution of DNA priming, we tested the efficacy of adenovirus vaccine alone (NMRC-M3V-Ad-PfCA ) in a Phase 1 clinical trial.
METHODOLOGY/PRINCIPAL FINDINGS: The regimen was a single intramuscular injection with two non-replicating human serotype 5 adenovectors encoding CSP and AMA1, respectively. One x 10 (10) particle units of each construct were combined prior to administration. The regimen was safe and well-tolerated. Four weeks later, 18 study subjects received P. falciparum CHMI administered by mosquito bite. None were fully protected although one showed delayed onset of parasitemia. Antibody responses were low, with geometric mean CSP ELISA titer of 381 (range
SIGNIFICANCE: In contrast to DNA/Ad, Ad alone did not protect against CHMI despite inducing broad, cell-mediated immunity, indicating that DNA priming is required for protection by the adenovirus-vectored vaccine. ClinicalTrials.gov Identifier: NCT00392015
IMRAS-A clinical trial of mosquito-bite immunization with live, radiation-attenuated P. falciparum sporozoites: Impact of immunization parameters on protective efficacy and generation of a repository of immunologic reagents.
BackgroundImmunization with radiation-attenuated sporozoites (RAS) by mosquito bite provides >90% sterile protection against Plasmodium falciparum (Pf) malaria in humans. RAS invade hepatocytes but do not replicate. CD8+ T cells recognizing parasite-derived peptides on the surface of infected hepatocytes are likely the primary protective mechanism. We conducted a randomized clinical trial of RAS immunization to assess safety, to achieve 50% vaccine efficacy (VE) against controlled human malaria infection (CHMI), and to generate reagents from protected and non-protected subjects for future identification of protective immune mechanisms and antigens.MethodsTwo cohorts (Cohort 1 and Cohort 2) of healthy, malaria-naïve, non-pregnant adults age 18-50 received five monthly immunizations with infected (true-immunized, n = 21) or non-infected (mock-immunized, n = 5) mosquito bites and underwent homologous CHMI at 3 weeks. Immunization parameters were selected for 50% protection based on prior clinical data. Leukapheresis was done to collect plasma and peripheral blood mononuclear cells.ResultsAdverse event rates were similar in true- and mock-immunized subjects. Two true- and two mock-immunized subjects developed large local reactions likely caused by mosquito salivary gland antigens. In Cohort 1, 11 subjects received 810-1235 infected bites; 6/11 (55%) were protected against CHMI vs. 0/3 mock-immunized and 0/6 infectivity controls (VE 55%). In Cohort 2, 10 subjects received 839-1131 infected bites with a higher first dose and a reduced fifth dose; 9/10 (90%) were protected vs. 0/2 mock-immunized and 0/6 controls (VE 90%). Three/3 (100%) protected subjects administered three booster immunizations were protected against repeat CHMI vs. 0/6 controls (VE 100%). Cohort 2 uniquely showed a significant rise in IFN-γ responses after the third and fifth immunizations and higher antibody responses to CSP.ConclusionsPfRAS were generally safe and well tolerated. Cohort 2 had a higher first dose, reduced final dose, higher antibody responses to CSP and significant rise of IFN-γ responses after the third and fifth immunizations. Whether any of these factors contributed to increased protection in Cohort 2 requires further investigation. A cryobank of sera and cells from protected and non-protected individuals was generated for future immunological studies and antigen discovery.Trial registrationClinicalTrials.gov NCT01994525
DNA prime/Adenovirus boost malaria vaccine encoding P. falciparum CSP and AMA1 induces sterile protection associated with cell-mediated immunity
Contains fulltext :
118242.pdf (publisher's version ) (Open Access)BACKGROUND: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection. METHODOLOGY/PRINCIPAL FINDINGS: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea), possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44-817; AMA1 geometric mean micrograms/milliliter 11.9, range 1.5-102) and were not associated with protection. Ex vivo IFN-gamma ELISpot responses after Ad boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13-408; AMA1 348, range 88-1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly associated with protection (p = 0.019). Flow cytometry identified predominant IFN-gamma mono-secreting CD8+ T cell responses in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the association was not statistically significant. SIGNIFICANCE: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional antigens may improve protection. TRIAL REGISTRATION: ClinicalTrials.govNCT00870987
Development of parasitemia in the immunized and infectivity control subjects.
<p><b>Panel A</b>: Parasitemia-free survival curves (Kaplan-Meier) for immunized volunteers and infectivity controls based on microscopic examination of peripheral blood smears. <b>Panel B</b>: Quantitative(q)-PCR measurements of parasitemia in immunized and challenge controls (error bars show standard deviation) (see reference 28).</p
Rank correlations between pre-existing anti-Ad5 NAb titers and ELISpot, CD4+ T cell and CD8+ T cell IFN-γ activities, ELISA and Sporozoite IFA titers.
<p>Pre-existing Ad5 NAb titers measured just prior to Ad immunization were tested for negative correlations with CSP and AMA1 activities by IFN-γ ELISpot, total IFN-γ CD4+ T cell ICS, total IFN-γ CD8+ T cell ICS, ELISA and sporozoite IFA for all volunteers (n = 15). r = rank correlation coefficient, and p = p value for the null hypothesis that the correlation is zero (two-tailed). Significant correlations are shown in bold.</p
Study subjects demographics.
<p>Twenty volunteers were enrolled into the immunization group; five dropped out prior to CHMI (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0055571#pone-0055571-g003" target="_blank">Figure 3</a>). Infectivity controls were enrolled later, in time for CHMI on week 28. NAb titers are provided for the 15 study subjects who were challenged (included in the immunogenicity analysis); these were measured just prior to Ad boost.</p
Trial design.
<p>Subjects were immunized week 0, 4, 8 and 24 and challenged week 28 (blue arrows). Samples for measuring cell-mediated immunity (ELISpot assay and flow cytometry) were collected at six time points (black arrows), and for measuring antibody levels (ELISA, IFA and growth inhibition assay) at similar time points plus after the DNA immunizations (gray arrows). See text for details.</p
IFN-γ ELISpot Assay: Depletion of CD4+ and CD8+ T cells.
<p>Protected volunteers v06, v10, v11 and v18, and non-protected volunteers v03, v12 and v15 were tested for ELISpot activity to CSP and AMA1 peptides after depletion of CD4+ or CD8+ T cells. Percent reduction in the number of spot forming cells per 1,000,000 PBMC following depletion of CD4+ T cells or CD8+ T cells is shown for each volunteer tested. A positive effect was defined as >20% reduction (See Reference 15). v06 and v10 were tested twice with AMA1, and v11 was tested three times with AMA1.</p
Flow diagram of immunized and control volunteers.
<p>Thirty-seven volunteers met all eligibility criteria and were allocated to the immunization group (n = 20) and infectivity controls (n = 6), and 11 were either alternates (n = 6) or not used. WBC = white blood count; DVT = deep venous thrombosis. See text for explanation.</p