54 research outputs found

    Reentrant and Whirling Hexagons in Non-Boussinesq convection

    Get PDF
    We review recent computational results for hexagon patterns in non-Boussinesq convection. For sufficiently strong dependence of the fluid parameters on the temperature we find reentrance of steady hexagons, i.e. while near onset the hexagon patterns become unstable to rolls as usually, they become again stable in the strongly nonlinear regime. If the convection apparatus is rotated about a vertical axis the transition from hexagons to rolls is replaced by a Hopf bifurcation to whirling hexagons. For weak non-Boussinesq effects they display defect chaos of the type described by the two-dimensional complex Ginzburg-Landau equation. For stronger non-Boussinesq effects the Hopf bifurcation becomes subcritical and localized bursting of the whirling amplitude is found. In this regime the coupling of the whirling amplitude to (small) deformations of the hexagon lattice becomes important. For yet stronger non-Boussinesq effects this coupling breaks up the hexagon lattice and strongly disordered states characterized by whirling and lattice defects are obtained.Comment: Accepted in European Physical Journal Special Topic

    A function using cubic splines for the analysis of alpha--particles spectra from silicon detectors

    Get PDF
    A function based on the characteristics of the alpha-particle lines obtained with silicon semiconductor detectors and modi"ed by using cubic splines is proposed to parametrize the shape of the peaks. A reduction in the number of parameters initially considered in other proposals was carried out in order to improve the stability of the optimization process. It was imposed by the boundary conditions for the cubic splines term. This function was then able to describe peaks with highly anomalous shapes with respect to those expected from this type of detector. Some criteria were implemented to correctly determine the area of the peaks and their errors. Comparisons with other well-established functions revealed excellent agreement in the "nal values obtained from both "ts. Detailed studies on reliability of the "tting results were carried out and the application of the function is proposed. Although the aim was to correct anomalies in peak shapes, the peaks showing the expected shapes were also well "tted. Accordingly, the validity of the proposal is quite general in the analysis of alpha-particle spectrometry with semiconductor detectors

    Decomposition driven interface evolution for layers of binary mixtures: {II}. Influence of convective transport on linear stability

    Full text link
    We study the linear stability with respect to lateral perturbations of free surface films of polymer mixtures on solid substrates. The study focuses on the stability properties of the stratified and homogeneous steady film states studied in Part I [U. Thiele, S. Madruga and L. Frastia, Phys. Fluids 19, 122106 (2007)]. To this aim, the linearized bulk equations and boundary equations are solved using continuation techniques for several different cases of energetic bias at the surfaces, corresponding to linear and quadratic solutal Marangoni effects. For purely diffusive transport, an increase in film thickness either exponentially decreases the lateral instability or entirely stabilizes the film. Including convective transport leads to a further destabilization as compared to the purely diffusive case. In some cases the inclusion of convective transport and the related widening of the range of available film configurations (it is then able to change its surface profile) change the stability behavior qualitatively. We furthermore present results regarding the dependence of the instability on several other parameters, namely, the Reynolds number, the Surface tension number and the ratio of the typical velocities of convective and diffusive transport.Comment: Published in Physics of Fluic

    Hexagons and spiral defect chaos in non-Boussinesq convection at low Prandtl numbers

    Full text link
    We study the stability and dynamics of non-Boussinesq convection in pure gases ?CO2 and SF6? with Prandtl numbers near Pr? 1 and in a H2-Xe mixture with Pr= 0.17. Focusing on the strongly nonlinear regime we employ Galerkin stability analyses and direct numerical simulations of the Navier-Stokes equations. For Pr ? 1 and intermediate non-Boussinesq effects we find reentrance of stable hexagons as the Rayleigh number is increased. For stronger non-Boussinesq effects the usual, transverse side-band instability is superseded by a longitudinal side-band instability. Moreover, the hexagons do not exhibit any amplitude instability to rolls. Seemingly, this result contradicts the experimentally observed transition from hexagons to rolls. We resolve this discrepancy by including the effect of the lateral walls. Non-Boussinesq effects modify the spiral defect chaos observed for larger Rayleigh numbers. For convection in SF6 we find that non-Boussinesq effects strongly increase the number of small, compact convection cells and with it enhance the cellular character of the patterns. In H2-Xe, closer to threshold, we find instead an enhanced tendency toward roll-like structures. In both cases the number of spirals and of targetlike components is reduced. We quantify these effects using recently developed diagnostics of the geometric properties of the patterns

    Many Attractors, Long Chaotic Transients, and Failure in Small-World Networks of Excitable Neurons

    Get PDF
    We study the dynamical states that emerge in a small-world network of recurrently coupled excitable neurons through both numerical and analytical methods. These dynamics depend in large part on the fraction of long-range connections or `short-cuts' and the delay in the neuronal interactions. Persistent activity arises for a small fraction of `short-cuts', while a transition to failure occurs at a critical value of the `short-cut' density. The persistent activity consists of multi-stable periodic attractors, the number of which is at least on the order of the number of neurons in the network. For long enough delays, network activity at high `short-cut' densities is shown to exhibit exceedingly long chaotic transients whose failure-times averaged over many network configurations follow a stretched exponential. We show how this functional form arises in the ensemble-averaged activity if each network realization has a characteristic failure-time which is exponentially distributed.Comment: 14 pages 23 figure

    Effect of the inclination angle on the transient melting dynamics and heat transfer of a phase change material

    Get PDF
    “This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in (Curbelo, J.; Madruga, S. Effect of the inclination angle on the transient melting dynamics and heat transfer of a phase change material. "Physics of fluids", 1 Maig 2021, vol. 33, núm. 5.) and may be found at https://aip.scitation.org/doi/10.1063/5.0047367"We report two-dimensional simulations and analytic results on the effect of the inclination on the transient heat transfer, flow, and melting dynamics of a phase change material within a square domain heated from one side. The liquid phase has Prandtl number Pr¿=¿60.8, Stefan number Ste¿=¿0.49, and Rayleigh numbers extend over eight orders of magnitude 0=¿¿=6.6·108 for the largest geometry studied. The tilt determines the stability threshold of the base state. Above a critical inclination, there exists only a laminar flow at the melted phase, irrespective of the Rayleigh number. Below that inclination, the base state destabilizes following two paths according to the inclination: either leading to a turbulent state for angles near the critical inclination or passing through a regime of plume coarsening before reaching the turbulent state for smaller angles. We find that the Nusselt and Reynolds numbers follow a power law as ¿¿~¿¿¿,¿¿¿~¿¿¿ in the turbulent regime. Small inclinations reduce very slightly a and strongly ß. The inclination leads to subduction of the kinematic boundary layer into the thermal boundary layer. The scaling laws of the Nusselt and Reynolds numbers and boundary layers are in agreement with different results at high Rayleigh convection. However, some striking differences appear as the stabilization of turbulent states with further increasing of the Rayleigh number. We find as well that the turbulent regime exhibits a higher dispersion in quantities related to heat transfer and flow dynamics on smaller domains.S.M. acknowledges support by the Spanish Ministerio de Economía y Competitividad under Project Nos. TRA2016‐75075-R and ESP2015‐70458-P. J.C. acknowledges the support of the “Ramon y Cajal” Project No. RYC2018‐025169 and ICMAT Severo Ochoa Project No. SEV-2015‐0554.Postprint (author's final draft

    Bifurcation diagrams for polymer blends with diffuse interfaces in confined and adaptive geometries

    Full text link
    Dynamics of binary mixtures such as polymer blends, and fluids near the critical point, is described by the model-H, which couples momentum transport and diffusion of the components [1]. We present an extended version of the model-H that allows to study the combined effect of phase separation in a polymer blend and surface structuring of the film itself [2]. We apply it to analyze the stability of vertically stratified base states on extended films of polymer blends and show that convective transport leads to new mechanisms of instability as compared to the simpler diffusive case described by the Cahn- Hilliard model [3, 4]. We carry out this analysis for realistic parameters of polymer blends used in experimental setups such as PS/PVME. However, geometrically more complicated states involving lateral structuring, strong deflections of the free surface, oblique diffuse interfaces, checkerboard modes, or droplets of a component above of the other are possible at critical composition solving the Cahn Hilliard equation in the static limit for rectangular domains [5, 6] or with deformable free surfaces [6]. We extend these results for off-critical compositions, since balanced overall composition in experiments are unusual. In particular, we study steady nonlinear solutions of the Cahn-Hilliard equation for bidimensional layers with fixed geometry and deformable free surface. Furthermore we distinguished the cases with and without energetic bias at the free surface. We present bifurcation diagrams for off-critical films of polymer blends with free surfaces, showing their free energy, and the L2-norms of surface deflection and the concentration field, as a function of lateral domain size and mean composition. Simultaneously, we look at spatial dependent profiles of the height and concentration. To treat the problem of films with arbitrary surface deflections our calculations are based on minimizing the free energy functional at given composition and geometric constraints using a variational approach based on the Cahn-Hilliard equation. The problem is solved numerically using the finite element method (FEM)

    Convective transport and stability in films of binary mixtures

    Get PDF
    Thin polymer films are increasingly used in advanced technological applications. The use of these films as coatings is often limited by their lack of stability due to their wettability properties on the substrate
    corecore