64 research outputs found

    On the decorrelation filtering of RL05 GRACE data for global applications

    Get PDF
    In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from GRACE (Gravity Recovery and Climate Experiment) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data; (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.This work has been partly supported by two Spanish Projects from CGL2010-12153-E and AYA2010-22039-C02-01; and two from Generalitat Valenciana, GV/2013/144 and ACOMP-2013-068

    Relation between Temperature and Mortality in Thirteen Spanish Cities

    Get PDF
    In this study we examined the shape of the association between temperature and mortality in 13 Spanish cities representing a wide range of climatic and socio-demographic conditions. The temperature value linked with minimum mortality (MMT) and the slopes before and after the turning point (MMT) were calculated. Most cities showed a V-shaped temperature-mortality relationship. MMTs were generally higher in cities with warmer climates. Cold and heat effects also depended on climate: effects were greater in hotter cities but lesser in cities with higher variability. The effect of heat was greater than the effect of cold. The effect of cold and MMT was, in general, greater for cardio-respiratory mortality than for total mortality, while the effect of heat was, in general, greater among the elderly

    The Short-Term Prediction of Length of Day Using 1D Convolutional Neural Networks (1D CNN)

    Get PDF
    Accurate Earth orientation parameter (EOP) predictions are needed for many applications, e.g., for the tracking and navigation of interplanetary spacecraft missions. One of the most difficult parameters to forecast is the length of day (LOD), which represents the variation in the Earth’s rotation rate since it is primarily affected by the torques associated with changes in atmospheric circulation. In this study, a new-generation time-series prediction algorithm is developed. The one-dimensional convolutional neural network (1D CNN), which is one of the deep learning methods, is introduced to model and predict the LOD using the IERS EOP 14 C04 and axial Z component of the atmospheric angular momentum (AAM), which was taken from the German Research Centre for Geosciences (GFZ) since it is strongly correlated with the LOD changes. The prediction procedure operates as follows: first, we detrend the LOD and Z-component series using the LS method, then, we obtain the residual series of each one to be used in the 1D CNN prediction algorithm. Finally, we analyze the results before and after introducing the AAM function. The results prove the potential of the proposed method as an optimal algorithm to successfully reconstruct and predict the LOD for up to 7 days.S.B. was partially supported by Generalitat Valenciana (SEJIGENT/2021/001) and the European Union—NextGenerationEU (ZAMBRANO 21-04). J.M. was partially supported by Spanish Projects PID2020-119383GB-I00 funded by MCIN/AEI/10.13039/501100011033 and PROMETEO/2021/030 (Generalitat Valenciana)

    A new method to improve the prediction of the celestial pole offsets

    Get PDF
    Knowledge of the Earth’s changing rotation is fundamental to positioning objects in space and on the planet. Nowadays, the Earth’s orientation in space is expressed by five Earth Orientation Parameters (EOP). Many applications in astronomy, geosciences, and space missions require accurate EOP predictions. Operational predictions are released daily by the Rapid Service/Prediction Centre of the International Earth Rotation and Reference Systems Service (IERS). The prediction procedures and performances differ for the three EOP classes: polar motion, rotation angle (UT1-UTC), and the two celestial pole offsets (CPO), dX and dY. The IERS Annual Report 2016 shows Rapid Service CPO predictions errors with respect to IERS 08 C04 observations in 2016 ranging from 120 to 140 μas in 40 days for dX, and 100–160 μas for dY. We test a new method for the CPO prediction based on the recent availability of sophisticated empirical models for the Free Core Nutation, a main component of the CPO variations. We found it allows predicting both CPO with error estimates for the period 2000–2016 lower than the 2016 Rapid Service products, reaching about 85 μas after 40 days and near 90 μas after a year. These results would represent a 35–40% improvement.SB and JF work were partially supported by projects AYA2016–79775-P (AEI/FEDER, UE), APOSTD/2026/079 and ERC-2017-STG SENTIFLEX (755617)

    Implementación de metodologías de evaluación continua: aplicación en la asignatura de Cálculo Numérico

    Get PDF
    La creación del nuevo Espacio Europeo de Educación Superior, con los consiguientes cambios en la estructura y contenidos de las titulaciones universitarias, ofrece una gran oportunidad para revisar las metodologías de aprendizaje, estando las metodologías de evaluación continua en una creciente expansión. El objetivo de este trabajo es investigar el efecto que tiene en el aprendizaje de los estudiantes diferentes metodologías de evaluación continua. Para ello, varios tipos de evaluación periódica (entrega de trabajos grupales y/o individuales, exámenes parciales, etc.) han sido puestos en práctica en la asignatura de Cálculo Numérico del último curso de la Licenciatura de Matemáticas y actual Grado de Matemáticas, a lo largo de un total de 14 años académicos en la Universidad de Alicante. En esta comunicación presentaremos las diferentes estrategias de desarrollo de los contenidos de la asignatura así como la forma de evaluación de los mismos. Además, se hará un análisis descriptivo de los resultados obtenidos con las distintas metodologías empleadas y se recogerán propuestas de mejora de cara al próximo curso

    Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques

    Get PDF
    The understanding of forced temporal variations in celestial pole motion (CPM) could bring us significantly closer to meeting the accuracy goals pursued by the Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG), i.e., 1 mm accuracy and 0.1 mm/year stability on global scales in terms of the Earth orientation parameters. Besides astronomical forcing, CPM excitation depends on the processes in the fluid core and the core–mantle boundary. The same processes are responsible for the variations in the geomagnetic field (GMF). Several investigations were conducted during the last decade to find a possible interconnection of GMF changes with the length of day (LOD) variations. However, less attention was paid to the interdependence of the GMF changes and the CPM variations. This study uses the celestial pole offsets (CPO) time series obtained from very long baseline interferometry (VLBI) observations and data such as spherical harmonic coefficients, geomagnetic jerk, and magnetic field dipole moment from a state-of-the-art geomagnetic field model to explore the correlation between them. In this study, we use wavelet coherence analysis to compute the correspondence between the two non-stationary time series in the time–frequency domain. Our preliminary results reveal interesting common features in the CPM and GMF variations, which show the potential to improve the understanding of the GMF’s contribution to the Earth’s rotation. Special attention is given to the corresponding signal between FCN and GMF and potential time lags between geomagnetic jerks and rotational variations.J.M.F was partially supported by Spanish Projects PID2020-119383GB-I00 (AEI/FEDER, UE) and PROMETEO/2021/030 (Generalitat Valenciana). S.B was supported by the Generalitat Valenciana SEJIGENT program (SEJIGENT/2021/001) and by the European Research Council (ERC) under the ERC2017-STG SENTIFLEX project (Grant Agreement 755617)

    Testing a new Free Core Nutation empirical model

    Get PDF
    The Free Core Nutation (FCN) is a free mode of the Earth's rotation caused by the different material characteristics of the Earth's core and mantle. This causes the rotational axes of those layers to slightly diverge from each other, resulting in a wobble of the Earth's rotation axis comparable to nutations. In this paper we focus on estimating empirical FCN models using the observed nutations derived from the VLBI sessions between 1993 and 2013. Assuming a fixed value for the oscillation period, the time-variable amplitudes and phases are estimated by means of multiple sliding window analyses. The effects of using different a priori Earth Rotation Parameters (ERP) in the derivation of models are also addressed. The optimal choice of the fundamental parameters of the model, namely the window width and step-size of its shift, is searched by performing a thorough experimental analysis using real data. The former analyses lead to the derivation of a model with a temporal resolution higher than the one used in the models currently available, with a sliding window reduced to 400 days and a day-by-day shift. It is shown that this new model increases the accuracy of the modeling of the observed Earth's rotation. Besides, empirical models determined from USNO Finals as a priori ERP present a slightly lower Weighted Root Mean Square (WRMS) of residuals than IERS 08 C04 along the whole period of VLBI observations, according to our computations. The model is also validated through comparisons with other recognized models. The level of agreement among them is satisfactory. Let us remark that our estimates give rise to the lowest residuals and seem to reproduce the FCN signal in more detail.This work has been partly supported by two Spanish Projects from CGL2010-12153-E and AYA2010-22039-C02-01

    On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames

    Get PDF
    Precise transformation between the celestial reference frames (CRF) and terrestrial reference frames (TRF) is needed for many purposes in Earth and space sciences. According to the Global Geodetic Observing System (GGOS) recommendations, the accuracy of positions and stability of reference frames should reach 1 mm and 0.1 mm year−1, and thus, the Earth Orientation Parameters (EOP) should be estimated with similar accuracy. Different realizations of TRFs, based on the combination of solutions from four different space geodetic techniques, and CRFs, based on a single technique only (VLBI, Very Long Baseline Interferometry), might cause a slow degradation of the consistency among EOP, CRFs, and TRFs (e.g., because of differences in geometry, orientation and scale) and a misalignment of the current conventional EOP series, IERS 08 C04. We empirically assess the consistency among the conventional reference frames and EOP by analyzing the record of VLBI sessions since 1990 with varied settings to reflect the impact of changing frames or other processing strategies on the EOP estimates. Our tests show that the EOP estimates are insensitive to CRF changes, but sensitive to TRF variations and unmodeled geophysical signals at the GGOS level. The differences between the conventional IERS 08 C04 and other EOP series computed with distinct TRF settings exhibit biases and even non-negligible trends in the cases where no differential rotations should appear, e.g., a drift of about 20 μas year−1in ypol when the VLBI-only frame VTRF2008 is used. Likewise, different strategies on station position modeling originate scatters larger than 150 μas in the terrestrial pole coordinates.SB and JMF work has been partly supported by Spanish grants CGL2010-12153-E, AYA2010-22039-C02-01, AYA2010-22039-C02-02 and APOSTD/2026/079

    Expert-based collaborative analysis of the situation and prospects of biomarker test implementation in oncology in Spain

    Get PDF
    Policy Roadmap; Spain; OncologyHoja de ruta política; España; OncologíaFull de ruta política; Espanya; OncologiaPurpose Biomarkers as screening for precision medicine is a fundamental step. The purpose of this article is twofold. First, to highlight the existing barriers in the implementation of Precision Medicine in Spain, with a special emphasis on barriers in access to the determination of biomarkers. Second, to provide a Roadmap that can help implement Precision Medicine equitably at the national level and optimize the use of biomarkers. Methods A systematic review of literature (SRL) and a focus group (FG) with multidisciplinary experts has been carried out in 2023. Participants were contacted individually, and discourse analysis was processed anonymously. Results We carried out a quantitative (SRL) and a qualitative approach (FG). The discourse analysis and roadmap were sent individually to each expert for approval. Conclusions The potential of Precision Medicine has not been fulfilled in Spain. While several regional initiatives are in place, a national plan or strategy around Precision Medicine and use of biomarkers is lacking. In a general context of rapid progress at a global and European level, including the 2021 Europe’s Beating Cancer Plan, it is time to define and implement a National Plan to make the promise come true. While some comparable countries within Europe – such as the UK or France – are mature enough to adopt such strategies, in Spain there is still a long way to go. We consider that the different strands of work outlined in the Roadmap can be used as basis for such purpose.This project has been funded with an unrestricted educational grant from Janssen

    Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste

    Full text link
    [EN] This study presents the valorization of cotton waste from the textile industry for the development of sustainable and cost-competitive biopolymer composites. The as-received linter of recycled cotton was first chopped to obtain short fibers, called recycled cotton fibers (RCFs), which were thereafter melt-compounded in a twin-screw extruder with partially bio-based polyethylene terephthalate (bio-PET) and shaped into pieces by injection molding. It was observed that the incorporation of RCF, in the 1¿10 wt% range, successfully increased rigidity and hardness of bio-PET. However, particularly at the highest fiber contents, the ductility and toughness of the pieces were considerably impaired due to the poor interfacial adhesion of the fibers to the biopolyester matrix. Interestingly, RCF acted as an effective nucleating agent for the bio-PET crystallization and it also increased thermal resistance. In addition, the overall dimensional stability of the pieces was improved as a function of the fiber loading. Therefore, bio-PET pieces containing 3¿5 wt% RCF presented very balanced properties in terms of mechanical strength, toughness, and thermal resistance. The resultant biopolymer composite pieces can be of interest in rigid food packaging and related applications, contributing positively to the optimization of the integrated biorefinery system design and also to the valorization of textile wastes.This research was supported by the Ministry of Science, Innovation, and Universities (MICIU) through the AGL2015-63855-C2-1-R and MAT2017-84909-C2-2-R program numbers. L.Q.-C. wants to thank the Generalitat Valenciana (GVA) for his FPI grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU grant (FPU15/03812). S.T.-G. is a recipient of a Juan de la Cierva Incorporación contract (IJCI-2016-29675) from MICIU.Montava-Jordà, S.; Torres-Giner, S.; Ferrándiz Bou, S.; Quiles-Carrillo, L.; Montanes, N. (2019). Development of Sustainable and Cost-Competitive Injection-Molded Pieces of Partially Bio-Based Polyethylene Terephthalate through the Valorization of Cotton Textile Waste. International Journal of Molecular Sciences. 20(6):1-19. https://doi.org/10.3390/ijms20061378S119206Tharanathan, R. . (2003). Biodegradable films and composite coatings: past, present and future. Trends in Food Science & Technology, 14(3), 71-78. doi:10.1016/s0924-2244(02)00280-7Plastics in a circular economyhttp://www.europarl.europa.eu/RegData/etudes/ATAG/2018/625163/EPRS_ATA(2018)625163_EN.pdfBabu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8Torres-Giner, S., Torres, A., Ferrándiz, M., Fombuena, V., & Balart, R. (2017). Antimicrobial activity of metal cation-exchanged zeolites and their evaluation on injection-molded pieces of bio-based high-density polyethylene. Journal of Food Safety, 37(4), e12348. doi:10.1111/jfs.12348Essabir, H., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. (2016). Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: Fibers and shell particles. Mechanics of Materials, 93, 134-144. doi:10.1016/j.mechmat.2015.10.018Holbery, J., & Houston, D. (2006). Natural-fiber-reinforced polymer composites in automotive applications. JOM, 58(11), 80-86. doi:10.1007/s11837-006-0234-2Quiles-Carrillo, L., Montanes, N., Boronat, T., Balart, R., & Torres-Giner, S. (2017). Evaluation of the engineering performance of different bio-based aliphatic homopolyamide tubes prepared by profile extrusion. Polymer Testing, 61, 421-429. doi:10.1016/j.polymertesting.2017.06.004Chen, L., Pelton, R. E. O., & Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production, 137, 667-676. doi:10.1016/j.jclepro.2016.07.094Rosenboom, J.-G., Hohl, D. K., Fleckenstein, P., Storti, G., & Morbidelli, M. (2018). Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nature Communications, 9(1). doi:10.1038/s41467-018-05147-yMonteiro, S. N., Lopes, F. P. D., Ferreira, A. S., & Nascimento, D. C. O. (2009). Natural-fiber polymer-matrix composites: Cheaper, tougher, and environmentally friendly. JOM, 61(1), 17-22. doi:10.1007/s11837-009-0004-zTaha, I., & Ziegmann, G. (2006). A Comparison of Mechanical Properties of Natural Fiber Filled Biodegradable and Polyolefin Polymers. Journal of Composite Materials, 40(21), 1933-1946. doi:10.1177/0021998306061304European Bioplasticshttps://www.european-bioplastics.org/Shen, L., Worrell, E., & Patel, M. K. (2012). Comparing life cycle energy and GHG emissions of bio-based PET, recycled PET, PLA, and man-made cellulosics. Biofuels, Bioproducts and Biorefining, 6(6), 625-639. doi:10.1002/bbb.1368Tabone, M. D., Cregg, J. J., Beckman, E. J., & Landis, A. E. (2010). Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environmental Science & Technology, 44(21), 8264-8269. doi:10.1021/es101640nCarus, M., Eder, A., & Beckmann, J. (2014). GreenPremium Prices Along the Value Chain of Biobased Products. Industrial Biotechnology, 10(2), 83-88. doi:10.1089/ind.2014.1512Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Journal of Polymers and the Environment, 10(1/2), 19-26. doi:10.1023/a:1021013921916Vollrath, F., & Porter, D. (2006). Spider silk as archetypal protein elastomer. Soft Matter, 2(5), 377. doi:10.1039/b600098nKelly, F. M., Johnston, J. H., Borrmann, T., & Richardson, M. J. (2008). Functionalised Hybrid Materials of Conducting Polymers with Individual Wool Fibers. Journal of Nanoscience and Nanotechnology, 8(4), 1965-1972. doi:10.1166/jnn.2008.040Farahani, G. N., Ahmad, I., & Mosadeghzad, Z. (2012). Effect of Fiber Content, Fiber Length and Alkali Treatment on Properties of Kenaf Fiber/UPR Composites Based on Recycled PET Wastes. Polymer-Plastics Technology and Engineering, 51(6), 634-639. doi:10.1080/03602559.2012.659314De Oliveira Santos, R. P., Castro, D. O., Ruvolo-Filho, A. C., & Frollini, E. (2014). Processing and thermal properties of composites based on recycled PET, sisal fibers, and renewable plasticizers. Journal of Applied Polymer Science, 131(12), n/a-n/a. doi:10.1002/app.40386Sena Neto, A. R., Araujo, M. A. M., Barboza, R. M. P., Fonseca, A. S., Tonoli, G. H. D., Souza, F. V. D., … Marconcini, J. M. (2015). Comparative study of 12 pineapple leaf fiber varieties for use as mechanical reinforcement in polymer composites. Industrial Crops and Products, 64, 68-78. doi:10.1016/j.indcrop.2014.10.042Anggraini, V., Asadi, A., Huat, B. B. K., & Nahazanan, H. (2015). Effects of coir fibers on tensile and compressive strength of lime treated soft soil. Measurement, 59, 372-381. doi:10.1016/j.measurement.2014.09.059Abdullah, N. M., & Ahmad, I. (2013). Potential of using polyester reinforced coconut fiber composites derived from recycling polyethylene terephthalate (PET) waste. Fibers and Polymers, 14(4), 584-590. doi:10.1007/s12221-013-0584-7Lei, Y., & Wu, Q. (2010). Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate). Bioresource Technology, 101(10), 3665-3671. doi:10.1016/j.biortech.2009.12.069Ozalp, M. (2010). Study of the effect of adding the powder of waste PET bottles and borax pentahydrate to the urea formaldehyde adhesive applied on plywood. European Journal of Wood and Wood Products, 69(3), 369-374. doi:10.1007/s00107-010-0439-5Ardekani, S. M., Dehghani, A., Al-Maadeed, M. A., Wahit, M. U., & Hassan, A. (2014). Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fibers and Polymers, 15(7), 1531-1538. doi:10.1007/s12221-014-1531-yLou, C.-W., Lin, C.-W., Lei, C.-H., Su, K.-H., Hsu, C.-H., Liu, Z.-H., & Lin, J.-H. (2007). PET/PP blend with bamboo charcoal to produce functional composites. Journal of Materials Processing Technology, 192-193, 428-433. doi:10.1016/j.jmatprotec.2007.04.018Corradini, E., Ito, E. N., Marconcini, J. M., Rios, C. T., Agnelli, J. A. M., & Mattoso, L. H. C. (2009). Interfacial behavior of composites of recycled poly(ethyelene terephthalate) and sugarcane bagasse fiber. Polymer Testing, 28(2), 183-187. doi:10.1016/j.polymertesting.2008.11.014Chen, R. S., Ab Ghani, M. H., Ahmad, S., Salleh, M. N., & Tarawneh, M. A. (2014). Rice husk flour biocomposites based on recycled high-density polyethylene/polyethylene terephthalate blend: effect of high filler loading on physical, mechanical and thermal properties. Journal of Composite Materials, 49(10), 1241-1253. doi:10.1177/0021998314533361Kim, S. S., Kim, J., Huang, T. S., Whang, H. S., & Lee, J. (2009). Antimicrobial polyethylene terephthalate (PET) treated with an aromaticN-halamine precursor,m-aramid. Journal of Applied Polymer Science, 114(6), 3835-3840. doi:10.1002/app.31016Friedrich, K. (1985). Microstructural efficiency and fracture toughness of short fiber/thermoplastic matrix composites. Composites Science and Technology, 22(1), 43-74. doi:10.1016/0266-3538(85)90090-9Fung, K. L., & Li, R. K. Y. (2006). Mechanical properties of short glass fibre reinforced and functionalized rubber-toughened PET blends. Polymer Testing, 25(7), 923-931. doi:10.1016/j.polymertesting.2006.05.013Li, Z., Luo, G., Wei, F., & Huang, Y. (2006). Microstructure of carbon nanotubes/PET conductive composites fibers and their properties. Composites Science and Technology, 66(7-8), 1022-1029. doi:10.1016/j.compscitech.2005.08.006Quiles-Carrillo, L., Montanes, N., Sammon, C., Balart, R., & Torres-Giner, S. (2018). Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Industrial Crops and Products, 111, 878-888. doi:10.1016/j.indcrop.2017.10.062Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017George, M., Chae, M., & Bressler, D. C. (2016). Composite materials with bast fibres: Structural, technical, and environmental properties. Progress in Materials Science, 83, 1-23. doi:10.1016/j.pmatsci.2016.04.002Natural Fibre Demand Risinghttp://cottonanalytics.com/natural-fibre-demand-rising/Peña-Pichardo, P., Martínez-Barrera, G., Martínez-López, M., Ureña-Núñez, F., & dos Reis, J. M. L. (2018). Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete. Construction and Building Materials, 177, 409-416. doi:10.1016/j.conbuildmat.2018.05.137Mohanty, A. K., Misra, M., & Hinrichsen, G. (2000). Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 276-277(1), 1-24. doi:10.1002/(sici)1439-2054(20000301)276:13.0.co;2-wBayer, F. L. (2002). Polyethylene terephthalate recycling for food-contact applications: testing, safety and technologies: a global perspective. Food Additives & Contaminants, 19(sup1), 111-134. doi:10.1080/02652030110083694Zou, Y., Reddy, N., & Yang, Y. (2011). Reusing polyester/cotton blend fabrics for composites. Composites Part B: Engineering, 42(4), 763-770. doi:10.1016/j.compositesb.2011.01.022Oromiehie, A., & Mamizadeh, A. (2004). Recycling PET beverage bottles and improving properties. Polymer International, 53(6), 728-732. doi:10.1002/pi.1389Elamri, A., Lallam, A., Harzallah, O., & Bencheikh, L. (2007). Mechanical characterization of melt spun fibers from recycled and virgin PET blends. Journal of Materials Science, 42(19), 8271-8278. doi:10.1007/s10853-007-1590-1Torres-Giner, S., Hilliou, L., Melendez-Rodriguez, B., Figueroa-Lopez, K. J., Madalena, D., Cabedo, L., … Lagaron, J. M. (2018). Melt processability, characterization, and antibacterial activity of compression-molded green composite sheets made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with coconut fibers impregnated with oregano essential oil. Food Packaging and Shelf Life, 17, 39-49. doi:10.1016/j.fpsl.2018.05.002Wambua, P., Ivens, J., & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 63(9), 1259-1264. doi:10.1016/s0266-3538(03)00096-4Thwe, M. M., & Liao, K. (2002). Effects of environmental aging on the mechanical properties of bamboo–glass fiber reinforced polymer matrix hybrid composites. Composites Part A: Applied Science and Manufacturing, 33(1), 43-52. doi:10.1016/s1359-835x(01)00071-9Baley, C., Busnel, F., Grohens, Y., & Sire, O. (2006). Influence of chemical treatments on surface properties and adhesion of flax fibre–polyester resin. Composites Part A: Applied Science and Manufacturing, 37(10), 1626-1637. doi:10.1016/j.compositesa.2005.10.014Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., & Herrera-Franco, P. J. (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering, 30(3), 309-320. doi:10.1016/s1359-8368(98)00054-7Strömbro, J., & Gudmundson, P. (2008). An anisotropic fibre-network model for mechano-sorptive creep in paper. International Journal of Solids and Structures, 45(22-23), 5765-5787. doi:10.1016/j.ijsolstr.2008.06.010Dunne, R., Desai, D., & Sadiku, R. (2017). Material characterization of blended sisal-kenaf composites with an ABS matrix. Applied Acoustics, 125, 184-193. doi:10.1016/j.apacoust.2017.03.022Pereira, L. M., Corrêa, A. C., Souza Filho, M. de sá M. de, Rosa, M. de F., & Ito, E. N. (2017). Rheological, Morphological and Mechanical Characterization of Recycled Poly (Ethylene Terephthalate) Blends and Composites. Materials Research, 20(3), 791-800. doi:10.1590/1980-5373-mr-2016-0870Torres-Giner, S., Montanes, N., Fombuena, V., Boronat, T., & Sanchez-Nacher, L. (2016). Preparation and characterization of compression-molded green composite sheets made of poly(3-hydroxybutyrate) reinforced with long pita fibers. Advances in Polymer Technology, 37(5), 1305-1315. doi:10.1002/adv.21789Kim, S.-J., Moon, J.-B., Kim, G.-H., & Ha, C.-S. (2008). Mechanical properties of polypropylene/natural fiber composites: Comparison of wood fiber and cotton fiber. Polymer Testing, 27(7), 801-806. doi:10.1016/j.polymertesting.2008.06.002Kant, R. (2012). Textile dyeing industry an environmental hazard. Natural Science, 04(01), 22-26. doi:10.4236/ns.2012.41004Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A., & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites. Materials & Design (1980-2015), 52, 841-848. doi:10.1016/j.matdes.2013.06.022Hristov, V., & Vasileva, S. (2003). Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 288(10), 798-806. doi:10.1002/mame.200300110Wang, Y., Gao, J., Ma, Y., & Agarwal, U. S. (2006). Study on mechanical properties, thermal stability and crystallization behavior of PET/MMT nanocomposites. Composites Part B: Engineering, 37(6), 399-407. doi:10.1016/j.compositesb.2006.02.014Ke, Y.-C., Wu, T.-B., & Xia, Y.-F. (2007). The nucleation, crystallization and dispersion behavior of PET–monodisperse SiO2 composites. Polymer, 48(11), 3324-3336. doi:10.1016/j.polymer.2007.03.059Blundell, D. J. (1987). On the interpretation of multiple melting peaks in poly(ether ether ketone). Polymer, 28(13), 2248-2251. doi:10.1016/0032-3861(87)90382-xYasuniwa, M., Sakamo, K., Ono, Y., & Kawahara, W. (2008). Melting behavior of poly(l-lactic acid): X-ray and DSC analyses of the melting process. Polymer, 49(7), 1943-1951. doi:10.1016/j.polymer.2008.02.034Kong, Y., & Hay, J. . (2003). Multiple melting behaviour of poly(ethylene terephthalate). Polymer, 44(3), 623-633. doi:10.1016/s0032-3861(02)00814-5Varga, J. (1995). Interfacial morphologies in carbon fibre-reinforced polypropylene microcomposites. Polymer, 36(25), 4877-4881. doi:10.1016/00323-8619(59)9305e-De Souza, A. M. C., & Caldeira, C. B. (2015). An investigation on recycled PET/PP and recycled PET/PP-EP compatibilized blends: Rheological, morphological, and mechanical properties. Journal of Applied Polymer Science, 132(17). doi:10.1002/app.41892Gangil, S., & Bhargav, V. K. (2018). Influence of torrefaction on intrinsic bioconstituents of cotton stalk: TG-insights. Energy, 142, 1066-1073. doi:10.1016/j.energy.2017.10.128Dan-mallam Yakubu, Abdullah, M. Z., & Yusoff, P. S. M. M. (2013). Mechanical properties of recycled kenaf/polyethylene terephthalate (PET) fiber reinforced polyoxymethylene (POM) hybrid composite. Journal of Applied Polymer Science, 131(3), n/a-n/a. doi:10.1002/app.39831Nurul Fazita, M. R., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M. K., Saurabh, C., Hussin, M., & H.P.S., A. (2016). Green Composites Made of Bamboo Fabric and Poly (Lactic) Acid for Packaging Applications—A Review. Materials, 9(6), 435. doi:10.3390/ma9060435Alongi, J., Camino, G., & Malucelli, G. (2013). Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics. Carbohydrate Polymers, 92(2), 1327-1334. doi:10.1016/j.carbpol.2012.10.029Alongi, J., Carosio, F., & Malucelli, G. (2012). Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polymer Degradation and Stability, 97(9), 1644-1653. doi:10.1016/j.polymdegradstab.2012.06.025Levchik, S. V., & Weil, E. D. (2004). A review on thermal decomposition and combustion of thermoplastic polyesters. Polymers for Advanced Technologies, 15(12), 691-700. doi:10.1002/pat.526Hujuri, U., Ghoshal, A. K., & Gumma, S. (2013). Temperature-dependent pyrolytic product evolution profile for polyethylene terephthalate. Journal of Applied Polymer Science, n/a-n/a. doi:10.1002/app.39681Candan, Z., Gardner, D. J., & Shaler, S. M. (2016). Dynamic mechanical thermal analysis (DMTA) of cellulose nanofibril/nanoclay/pMDI nanocomposites. Composites Part B: Engineering, 90, 126-132. doi:10.1016/j.compositesb.2015.12.016Marques, M. F. V., Lunz, J. N., Aguiar, V. O., Grafova, I., Kemell, M., Visentin, F., … Grafov, A. (2014). Thermal and Mechanical Properties of Sustainable Composites Reinforced with Natural Fibers. Journal of Polymers and the Environment, 23(2), 251-260. doi:10.1007/s10924-014-0687-2Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037Negoro, T., Thodsaratpreeyakul, W., Takada, Y., Thumsorn, S., Inoya, H., & Hamada, H. (2016). Role of Crystallinity on Moisture Absorption and Mechanical Performance of Recycled PET Compounds. Energy Procedia, 89, 323-327. doi:10.1016/j.egypro.2016.05.042Badía, J. D., Vilaplana, F., Karlsson, S., & Ribes-Greus, A. (2009). Thermal analysis as a quality tool for assessing the influence of thermo-mechanical degradation on recycled poly(ethylene terephthalate). Polymer Testing, 28(2), 169-175. doi:10.1016/j.polymertesting.2008.11.01
    corecore