869 research outputs found
Systematic study of heavy cluster emission from {210-226}^Ra isotopes
The half lives for various clusters lying in the cold reaction valleys of
{210-226}^Ra isotopes are computed using our Coulomb and proximity potential
model (CPPM). The computed half lives of 4^He and 14^C clusters from
{210-226}^Ra isotopes are in good agreement with experimental data. Half lives
are also computed using the Universal formula for cluster decay (UNIV) of
Poenaru et al., and are found to be in agreement with CPPM values. Our study
reveals the role of doubly magic 208^Pb daughter in cluster decay process.
Geiger - Nuttall plots for all clusters up to 62^Fe are studied and are found
to be linear with different slopes and intercepts. {12,14}^C emission from
220^Ra; 14^C emission from {222,224}^Ra; 14^C and 20^O emission from 226^Ra are
found to be most favourable for measurement and this observation will serve as
a guide to the future experiments.Comment: 22 pages, 6 figures; Nuclear Physics A (2012
Fine structure in the {\alpha}-decay of odd-even nuclei
Systematic study on {\alpha}-decay fine structure is presented for the first
time in the case of odd-even nuclei in the range 83 \leq Z \leq 101. The model
used for the study is the recently proposed Coulomb and proximity potential
model for deformed nuclei (CPPMDN), which employs deformed Coulomb potential,
deformed two term proximity potential and centrifugal potential. The computed
partial half lives, total half lives and branching ratios are compared with
experimental data and are in good agreement. The standard deviation of partial
half-life is 1.08 and that for branching ratio is 1.21. Our formalism is also
successful in predicting angular momentum hindered and structure hindered
transitions. The present study reveals that CPPMDN is a unified theory which is
successful in explaining alpha decay from ground and isomeric state; and alpha
fine structure of even-even, even-odd and odd-even nuclei. Our study relights
that the differences in the parent and daughter surfaces or the changes in the
deformation parameters as well as the shell structure of the parent and
daughter nuclei, influences the alpha decay probability.Comment: 35 pages, 5 figure
- …