509 research outputs found

    Prediction of transits of solar system objects in Kepler/K2 images: An extension of the Virtual Observatory service SkyBoT

    Full text link
    All the fields of the extended space mission Kepler/K2 are located within the ecliptic. Many solar system objects thus cross the K2 stellar masks on a regular basis. We aim at providing to the entire community a simple tool to search and identify solar system objects serendipitously observed by Kepler. The SkyBoT service hosted at IMCCE provides a Virtual Observatory (VO) compliant cone-search that lists all solar system objects present within a field of view at a given epoch. To generate such a list in a timely manner, ephemerides are pre-computed, updated weekly, and stored in a relational database to ensure a fast access. The SkyBoT Web service can now be used with Kepler. Solar system objects within a small (few arcminutes) field of view are identified and listed in less than 10 sec. Generating object data for the entire K2 field of view (14{\deg}) takes about a minute. This extension of the SkyBot service opens new possibilities with respect to mining K2 data for solar system science, as well as removing solar system objects from stellar photometric time-series

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&

    PASTIS: Bayesian extrasolar planet validation. I. General framework, models, and performance

    Full text link
    A large fraction of the smallest transiting planet candidates discovered by the Kepler and CoRoT space missions cannot be confirmed by a dynamical measurement of the mass using currently available observing facilities. To establish their planetary nature, the concept of planet validation has been advanced. This technique compares the probability of the planetary hypothesis against that of all reasonably conceivable alternative false-positive (FP) hypotheses. The candidate is considered as validated if the posterior probability of the planetary hypothesis is sufficiently larger than the sum of the probabilities of all FP scenarios. In this paper, we present PASTIS, the Planet Analysis and Small Transit Investigation Software, a tool designed to perform a rigorous model comparison of the hypotheses involved in the problem of planet validation, and to fully exploit the information available in the candidate light curves. PASTIS self-consistently models the transit light curves and follow-up observations. Its object-oriented structure offers a large flexibility for defining the scenarios to be compared. The performance is explored using artificial transit light curves of planets and FPs with a realistic error distribution obtained from a Kepler light curve. We find that data support for the correct hypothesis is strong only when the signal is high enough (transit signal-to-noise ratio above 50 for the planet case) and remains inconclusive otherwise. PLATO shall provide transits with high enough signal-to-noise ratio, but to establish the true nature of the vast majority of Kepler and CoRoT transit candidates additional data or strong reliance on hypotheses priors is needed.Comment: Accepted for publication in MNRAS; 23 pages, 11 figure

    The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys

    Full text link
    We investigate in this paper the astrophysical false-positive configuration in exoplanet-transit surveys that involves eclipsing binaries and giant planets which present only a secondary eclipse, as seen from the Earth. To test how an eclipsing binary configuration can mimic a planetary transit, we generate synthetic light curve of three examples of secondary-only eclipsing binary systems that we fit with a circular planetary model. Then, to evaluate its occurrence we model a population of binaries in double and triple system based on binary statistics and occurrence. We find that 0.061% +/- 0.017% of main-sequence binary stars are secondary-only eclipsing binaries mimicking a planetary transit candidate down to the size of the Earth. We then evaluate the occurrence that an occulting-only giant planet can mimic an Earth-like planet or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant planet that present only the secondary transit. Occulting-only giant planets mimic planets smaller than the Earth that are in the scope of space missions like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of Interest can be mimicked by this new configuration of false positives, re-evaluating the global false-positive rate of the Kepler mission from 9.4% +/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive scenario occurs at relatively long orbital period compared with the median period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&

    SOPHIE velocimetry of Kepler transit candidates. V. The three hot Jupiters KOI-135b, KOI-204b and KOI-203b (alias Kepler-17b)

    Full text link
    We report the discovery of two new transiting hot Jupiters, KOI-135b and KOI-204b, that were previously identified as planetary candidates by Borucki et al. 2011, and, independently of the Kepler team, confirm the planetary nature of Kepler-17b, recently announced by Desert et al. 2011. Radial-velocity measurements, taken with the SOPHIE spectrograph at the OHP, and Kepler photometry (Q1 and Q2 data) were used to derive the orbital, stellar and planetary parameters. KOI-135b and KOI-204b orbit their parent stars in 3.02 and 3.25 days, respectively. They have approximately the same radius, Rp=1.20+/-0.06 R_jup and 1.24+/-0.07 R_jup, but different masses Mp=3.23+/-0.19 M_jup and 1.02+/-0.07 M_jup. As a consequence, their bulk densities differ by a factor of four, rho_p=2.33+/-0.36 g.cm^-3 (KOI-135b) and 0.65+/-0.12 g.cm-3 (KOI-204b). Our SOPHIE spectra of Kepler-17b, used both to measure the radial-velocity variations and determine the atmospheric parameters of the host star, allow us to refine the characterisation of the planetary system. In particular we found the radial-velocity semi-amplitude and the stellar mass to be respectively slightly smaller and larger than Desert et al. These two quantities, however, compensate and lead to a planetary mass fully consistent with Desert et al.: our analysis gives Mp=2.47+/-0.10 M_jup and Rp=1.33+/-0.04 R_jup. We found evidence for a younger age of this planetary system, t<1.8 Gyr, which is supported by both evolutionary tracks and gyrochronology. Finally, we confirm the detection of the optical secondary eclipse and found also the brightness phase variation with the Q1 and Q2 Kepler data. The latter indicates a low redistribution of stellar heat to the night side (<16% at 1-sigma), if the optical planetary occultation comes entirely from thermal flux. The geometric albedo is A_g<0.12 (1-sigma).Comment: submitted to Astronomy and Astrophysic

    Transit shapes and self organising maps as a tool for ranking planetary candidates : application to Kepler and K2

    Get PDF
    A crucial step in planet hunting surveys is to select the best candidates for follow up observations, given limited telescope resources. This is often performed by human ‘eyeballing’, a time consuming and statistically awkward process. Here we present a new, fast machine learning technique to separate true planet signals from astrophysical false positives. We use Self Organising Maps (SOMs) to study the transit shapes of Kepler and K2 known and candidate planets. We find that SOMs are capable of distinguishing known planets from known false positives with a success rate of 87.0%, using the transit shape alone. Furthermore, they do not require any candidates to be dispositioned prior to use, meaning that they can be used early in a mission’s lifetime. A method for classifying candidates using a SOM is developed, and applied to previously unclassified members of the Kepler KOI list as well as candidates from the K2 mission. The method is extremely fast, taking minutes to run the entire KOI list on a typical laptop. We make Python code for performing classifications publicly available, using either new SOMs or those created in this work. The SOM technique represents a novel method for ranking planetary candidate lists, and can be used both alone or as part of a larger autovetting code

    The first radial velocity measurements of a microlensing event: no evidence for the predicted binary

    Full text link
    The gravitational microlensing technique allows the discovery of exoplanets around stars distributed in the disk of the galaxy towards the bulge. However, the alignment of two stars that led to the discovery is unique over the timescale of a human life and cannot be re-observed. Moreover, the target host is often very faint and located in a crowded region. These difficulties hamper and often make impossible the follow-up of the target and study of its possible companions. Gould et al. (2013) predicted the radial-velocity curve of a binary system, OGLE-2011-BLG-0417, discovered and characterised from a microlensing event by Shin et al. (2012). We used the UVES spectrograph mounted at the VLT, ESO to derive precise radial-velocity measurements of OGLE-2011-BLG-0417. To gather high-precision on faint targets of microlensing events, we proposed to use the source star as a reference to measure the lens radial velocities. We obtained ten radial velocities on the putative V=18 lens with a dispersion of ~100 m/s, spread over one year. Our measurements do not confirm the microlensing prediction for this binary system. The most likely scenario is that the assumed V=18 mag lens is actually a blend and not the primary lens that is 2 magnitude fainter. Further observations and analyses are needed to understand the microlensing observation and infer on the nature and characteristics of the lens itself.Comment: submitted on 3rd June 2015 to A&ALette

    Improved parameters of seven Kepler giant companions characterized with SOPHIE and HARPS-N

    Get PDF
    Radial-velocity observations of Kepler candidates obtained with the SOPHIE and HARPS-N spectrographs have permitted unveiling the nature of the five giant planets Kepler-41b, Kepler-43b, Kepler-44b, Kepler-74b, and Kepler-75b, the massive companion Kepler-39b, and the brown dwarf KOI-205b. These companions were previously characterized with long-cadence (LC) Kepler data. Here we aim at refining the parameters of these transiting systems by i) modelling the published radial velocities (RV) and Kepler short-cadence (SC) data that provide a much better sampling of the transits, ii) performing new spectral analyses of the SOPHIE and ESPaDOnS spectra, and iii) improving stellar rotation periods hence stellar age estimates through gyrochronology, when possible. Posterior distributions of the system parameters were derived with a differential evolution Markov chain Monte Carlo approach. Our main results are as follows: a) Kepler-41b is significantly larger and less dense than previously found because a lower orbital inclination is favoured by SC data. This also affects the determination of the geometric albedo that is lower than previously derived: Ag < 0.135; b) Kepler-44b is moderately smaller and denser than reported in the discovery paper; c) good agreement was achieved with published Kepler-43, Kepler-75, and KOI-205 system parameters, although the host stars Kepler-75 and KOI-205 were found to be slightly richer in metals and hotter, respectively; d) the previously reported non-zero eccentricities of Kepler-39b and Kepler-74b might be spurious. If their orbits were circular, the two companions would be smaller and denser than in the eccentric case. The radius of Kepler-39b is still larger than predicted by theoretical isochrones. Its parent star is hotter and richer in metals than previously determined. [ABRIDGED]Comment: 17 pages, 9 figures, accepted for publication in Astronomy and Astrophysic

    Oblique rings from migrating exomoons: A possible origin for long-period exoplanets with enlarged radii

    Full text link
    Context. The extremely low density of several long-period exoplanets in mature systems is still unexplained -- with HIP 41378 f being archetypical of this category. It has been proposed that such planets could actually have normal densities but be surrounded by a ring observed approximately face on, mimicking the transit depth of a puffy planet. This would imply that the equator of the planet is nearly perpendicular to its orbit plane, which is at odds with the formation process of gas giants. Yet, in the context of the Solar System planets, it has been shown that after gigayears of evolution, the tidal migration of a moon can naturally lead to a very tilted planet with a ring. Aims. As exomoons are expected to be ubiquitous around giant exoplanets, this mechanism may be responsible for the anomalous radii of some observed exoplanets. In preparation for the future discoveries of the PLATO mission, we present a simple method for checking the plausibility of this mechanism for a given exoplanet. Methods. Analytical formulas give the probability density function of the relevant precession harmonics of the planet. For each harmonic, simple criteria set the moon mass and other properties required for the mechanism to operate. Results. We applied this methodology to HIP 41378 f, and we show that in order to reproduce the observed configuration, a hypothetical former moon should have had a moon-to-planet mass ratio of a few times 1e-4 (i.e. roughly the mass of our Moon) and have migrated over a distance of a few planet's radii on a gigayear timescale. These orders of magnitude match the properties of moons expected to exist around gaseous exoplanets. Conclusions. We conclude that the migration of a former moon is a viable formation pathway for the proposed ring and tilt of HIP 41378 f. This example strengthens the ring hypothesis and motivates its application to other targets.Comment: Accepted for publication in Astronomy and Astrophysic
    • 

    corecore