9 research outputs found

    The Role of lncRNAs in Gene Expression Regulation through mRNA Stabilization

    Get PDF
    mRNA stability influences gene expression and translation in almost all living organisms, and the levels of mRNA molecules in the cell are determined by a balance between production and decay. Maintaining an accurate balance is crucial for the correct function of a wide variety of biological processes and to maintain an appropriate cellular homeostasis. Long non-coding RNAs (lncRNAs) have been shown to participate in the regulation of gene expression through different molecular mechanisms, including mRNA stabilization. In this review we provide an overview on the molecular mechanisms by which lncRNAs modulate mRNA stability and decay. We focus on how lncRNAs interact with RNA binding proteins and microRNAs to avoid mRNA degradation, and also on how lncRNAs modulate epitranscriptomic marks that directly impact on mRNA stability.LncRNA work in author’s laboratory is supported by European Foundation for the Study of Diabetes (EFSD)-EFSD/JDRF/Lilly Programme on Type 1 Diabetes Research and the Spanish Ministry of Science, Innovation and Universities (PID2019-104475GA-I00) to I.S; and Spanish Ministry of Science, Innovation and Universities (SAF2017-91873-EXP and PGC2018-097573-A-I00) to ACR. M.S.D. and I.G.M. are supported by a Predoctoral Fellowship Grant from the UPV/EHU (Universidad del País Vasco/Euskal Herriko Unibertsitatea) and A.O.G. is supported by a Predoctoral Fellowship Grant from the Education Department of Basque Government

    Implication of m6A mRNA Methylation in Susceptibility to Inflammatory Bowel Disease

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that develops due to the interaction between genetic and environmental factors. More than 160 loci have been associated with IBD, but the functional implication of many of the associated genes remains unclear. N6-Methyladenosine (m6A) is the most abundant internal modification in mRNA. m6A methylation regulates many aspects of mRNA metabolism, playing important roles in the development of several pathologies. Interestingly, SNPs located near or within m6A motifs have been proposed as possible contributors to disease pathogenesis. We hypothesized that certain IBD-associated SNPs could regulate the function of genes involved in IBD development via m6A-dependent mechanisms. We used online available GWAS, m6A and transcriptome data to find differentially expressed genes that harbored m6A-SNPs associated with IBD. Our analysis resulted in five candidate genes corresponding to two of the major IBD subtypes: UBE2L3 and SLC22A4 for Crohn’s Disease and TCF19, C6orf47 and SNAPC4 for Ulcerative Colitis. Further analysis using in silico predictions and co-expression analyses in combination with in vitro functional studies showed that our candidate genes seem to be regulated by m6A-dependent mechanisms. These findings provide the first indication of the implication of RNA methylation events in IBD pathogenesis.This work was supported by Spanish Ministry of Science, Innovation and Universities (grant PGC2018-097573-A-I00) to A.C.-R. I.S. was funded by research project grant 2015111068 of the Basque Department of Health and a Research Grant from the European Foundation for the Study of Diabetes. M.S.-d. and I.G.-M. are predoctoral fellows funded by grants from the University of Basque Country and A.O.-G. is a predoctoral fellow funded by Basque Department of Education, Universities and Research

    Implication of m6A mRNA Methylation in Susceptibility to Inflammatory Bowel Disease

    Get PDF
    Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract that develops due to the interaction between genetic and environmental factors. More than 160 loci have been associated with IBD, but the functional implication of many of the associated genes remains unclear. N6-Methyladenosine (m6A) is the most abundant internal modification in mRNA. m6A methylation regulates many aspects of mRNA metabolism, playing important roles in the development of several pathologies. Interestingly, SNPs located near or within m6A motifs have been proposed as possible contributors to disease pathogenesis. We hypothesized that certain IBD-associated SNPs could regulate the function of genes involved in IBD development via m6A-dependent mechanisms. We used online available GWAS, m6A and transcriptome data to find differentially expressed genes that harbored m6A-SNPs associated with IBD. Our analysis resulted in five candidate genes corresponding to two of the major IBD subtypes: UBE2L3 and SLC22A4 for Crohn’s Disease and TCF19, C6orf47 and SNAPC4 for Ulcerative Colitis. Further analysis using in silico predictions and co-expression analyses in combination with in vitro functional studies showed that our candidate genes seem to be regulated by m6A-dependent mechanisms. These findings provide the first indication of the implication of RNA methylation events in IBD pathogenesis.This work was supported by Spanish Ministry of Science, Innovation and Universities (grant PGC2018-097573-A-I00) to A.C.-R. I.S. was funded by research project grant 2015111068 of the Basque Department of Health and a Research Grant from the European Foundation for the Study of Diabetes. M.S.-d. and I.G.-M. are predoctoral fellows funded by grants from the University of Basque Country and A.O.-G. is a predoctoral fellow funded by Basque Department of Education, Universities and Research

    A novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylation

    Get PDF
    N6-methyladenosine (m6A) is the most common and abundant RNA modification. Recent studies have shown its importance in the regulation of several biological processes, including the immune response, and different approaches have been developed in order to map and quantify m6A marks. However, site specific detection of m6A methylation has been technically challenging, and existing protocols are long and tedious and often involve next-generation sequencing. Here, we describe a simple RT-QPCR based approach for the relative quantification of candidate m6A regions that takes advantage of the diminished capacity of BstI enzyme to retrotranscribe m6A residues. Using this technique, we have been able to confirm the recently described m6A methylation in the 3′UTR of SOCS1 and SOCS3 transcripts. Moreover, using the method presented here, we have also observed alterations in the relative levels of m6A in specific motifs of SOCS genes in celiac disease patients and in pancreatic β-cells exposed to inflammatory stimuli.J.R.B. is funded by Project ISCIII-PI16/00258 and co-funded by the European Union ERDF/ESF “A way to make Europe”. I.S. is funded by a research project grant 2015111068 of the Basque Department of Health. A.C.R. was funded by a Juan de la Cierva reincorporation and an Ikerbasque fellowships and a research project grant from Asociación Celiacos Madrid. I.R.G., A.O.G. and A.J.M. are supported by predoctoral fellowship grants from the UPV/EHU and the Basque Department of Education

    Transcription Factor Binding Site Enrichment Analysis In Co-Expression Modules In Celiac Disease

    Get PDF
    The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.The authors thank the technical and human support provided by SGIker of the UPV/EHU. The work was funded by ISCIII Research Project Grants PI13/01201 and PI16/00258, cofunded by the European Union ERDF/ESF "A way to make Europe" and by Basque Department of Health project 2011/111034 to JRB and Basque Department of Health project 2015/111068 to I.S., N.F.-J. was supported by an IARC Postodctoral Fellowship (FP7 Marie Curie Actions-People-COFUND) and a Postdoctoral Fellowship from the Basque Department of Education. I.R.-G. and A.J.-M. are supported by predoctoral fellowship grants from the UPV/EHU and the Basque Department of Education, respectively

    MAGI2 Gene Region and Celiac Disease

    Get PDF
    Celiac disease (CD) patients present a loss of intestinal barrier function due to structural alterations in the tight junction (TJ) network, the most apical unions between epithelial cells. The association of TJ-related gene variants points to an implication of this network in disease susceptibility. This work aims to characterize the functional implication of TJ-related, disease-associated loci in CD pathogenesis. We performed an association study of 8 TJ-related gene variants in a cohort of 270 CD and 91 non-CD controls. The expression level of transcripts located in the associated SNP region was analyzed by RT-PCR in several human tissues and in duodenal biopsies of celiac patients and non-CD controls. (si)RNA-driven silencing combined with gliadin in the Caco2 intestinal cell line was used to analyze the implication of transcripts from the associated region in the regulation of TJ genes. We replicated the association of rs6962966*A variant [p = 0.0029; OR = 1.88 (95%1.24-2.87)], located in an intron of TJ-related MAGI2 coding gene and upstream of RP4-587D13.2 transcript, bioinformatically classified as a long non-coding RNA (lncRNA). The expression of both genes is correlated and constitutively downregulated in CD intestine. Silencing of lncRNA decreases the levels of MAGI2 protein. At the same time, silencing of MAGI2 affects the expression of several TJ-related genes. The associated region is functionally altered in disease, probably affecting CD-related TJ genes.This work was partially funded by the Basque Department of Education grant IT1281-19 and ISCIII Research Project PI16/00258, cofunded by the European Union ERDF, A way to make Europe to JB. AC-R is supported by an Ikerbasque Fellowship and funded by a research project grant 2017111082 from the Basque Goverment. IS was funded by a research project grant 2015111068 from the Basque Department of Health. AJ-M and AO-G are predoctoral fellows funded by FPI grants from the Basque Department of Education, Universities and Research and IR-G and MS are predoctoral fellows funded by the University of Basque Country

    A long non-coding RNA that harbors a SNP associated with type 2 diabetes regulates the expression of TGM2 gene in pancreatic beta cells

    Get PDF
    IntroductionMost of the disease-associated single nucleotide polymorphisms (SNPs) lie in non- coding regions of the human genome. Many of these variants have been predicted to impact the expression and function of long non-coding RNAs (lncRNA), but the contribution of these molecules to the development of complex diseases remains to be clarified. MethodsHere, we performed a genetic association study between a SNP located in a lncRNA known as LncTGM2 and the risk of developing type 2 diabetes (T2D), and analyzed its implication in disease pathogenesis at pancreatic beta cell level. Genetic association study was performed on human samples linking the rs2076380 polymorphism with T2D and glycemic traits. The pancreatic beta cell line EndoC-bH1 was employed for functional studies based on LncTGM2 silencing and overexpression experiments. Human pancreatic islets were used for eQTL analysis. ResultsWe have identified a genetic association between LncTGM2 and T2D risk. Functional characterization of the LncTGM2 revealed its implication in the transcriptional regulation of TGM2, coding for a transglutaminase. The T2Dassociated risk allele in LncTGM2 disrupts the secondary structure of this lncRNA, affecting its stability and the expression of TGM2 in pancreatic beta cells. Diminished LncTGM2 in human beta cells impairs glucose-stimulated insulin release. ConclusionsThese findings provide novel information on the molecular mechanisms by which T2D-associated SNPs in lncRNAs may contribute to disease, paving the way for the development of new therapies based on the modulation of lncRNAs.This work was supported by grants from the Ministerio de Ciencia, Innovación y Universidades (PID2019-104475GA-I00 to I.S, and PGC2018-097573-A-I00 to AC-R) and the European Foundation for the Study of Diabetes (EFSD) - EFSD/JDRF/Lilly Programme on Type 1 Diabetes Research to IS. FO (MS19/00109) is recipient of the Miguel Servet scheme, and AL (FI19/00045) was supported by the Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (ES). HR-M (PRE2019-089350) is supported by predoctoral grant from the Ministerio de Ciencia, Innovacion y Universidades, Gobierno de España (ES) IG-M, MS-C, JM-S and AO-G were supported by Predoctoral Fellowship Grants from the UPV/EHU (Universidad del Pais Vasco/EuskalHerrikoUnibertsitatea) and the Basque Department of Education. MC is supported by the Fonds National de la RechercheScientifique (FNRS), the Francophone Foundation for Diabetes Research (sponsored by the French Diabetes Federation, Abbott, Eli Lilly, Merck Sharp & Dohme, and Novo Nordisk) and FF and MC by the EFSD/BoehringerIngelheim European Research Programme on Multi-System Challenges in Diabetes. The funders were not involved in the study design, collection, analysis, interpretation of data, the writing of this article, or the decision to submit it for publication

    m6A Methylated Long Noncoding RNA LOC339803 Regulates Intestinal Inflammatory Response

    No full text
    Cytokine mediated sustained inflammation increases the risk to develop different complex chronic inflammatory diseases, but the implicated mechanisms remain unclear. Increasing evidence shows that long noncoding RNAs (lncRNAs) play key roles in the pathogenesis of inflammatory disorders, while inflammation associated variants are described to affect their function or essential RNA modifications as N6-methyladenosine (m6A) methylation, increasing predisposition to inflammatory diseases. Here, the functional implication of the intestinal inflammation associated lncRNA LOC339803 in the production of cytokines by intestinal epithelial cells is described. Allele-specific m6A methylation is found to affect YTHDC1 mediated protein binding affinity. LOC339803-YTHDC1 interaction dictates chromatin localization of LOC339803 ultimately inducing the expression of NFκB mediated proinflammatory cytokines and contributing to the development of intestinal inflammation. These findings are confirmed using human intestinal biopsy samples from different intestinal inflammatory conditions and controls. Additionally, it is demonstrated that LOC339803 targeting can be a useful strategy for the amelioration of intestinal inflammation in vitro and ex vivo. Overall, the results support the importance of the methylated LOC339803 lncRNA as a mediator of intestinal inflammation, explaining genetic susceptibility and presenting this lncRNA as a potential novel therapeutic target for the treatment of inflammatory intestinal disorders.This research was supported by Ministerio de Ciencia, Innovación y Universidades grant PGC2018-097573-A-I00 and Departamento de Salud, Gobierno Vasco grant 2023111056 (ACR), Ministerio de Ciencia, Innovación y Universidades grant PID2019-104475GA-I00 (IS), The European Foundation for the Study of Diabetes grant (EFSD)-EFSD/JDRF/Lilly Programme on Type 1 Diabetes Research (IS), Basque Government predoctoral grant PRE_2018_2_0039 and post-doctoral grant ESPDOC21/56 (AOG), Ministerio de Ciencia, Innovación y Universidades predoctoral FPI grant PGC2018-097573-A-I00 (HRM), UPV-EHU predoctoral grant and Fundación Catedra Cajal grant (MSdlC). The authors thank the general proteomic service from SGIker (UPV/EHU/ ERDF, EU) for technical and human support provided

    Celiac Diasease-associated lncRNA Named HCG14 Regulates NOD1 Expression in Intestinal Cells

    No full text
    Objective: The aim of the study is to identify additional celiac disease associated loci in the major histocompatibility complex (MHC) independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. Methods: We performed a high-resolution single-nucleotide polymorphism (SNP) genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. Results: MHC genotyping revealed 2 associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci. Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. Conclusions: We have successfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HCG14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.I.R.G. and A.J.M. are supported by Predoctoral Fellowship grants from the UPV/EHU and the Basque Department of Education, respectively. N.F.J. is a Postdoctoral Fellow supported by the Basque Department of Education. A.C.R. is an Ikerbasque Research Fellow. J.R.B. is funded by Project ISCIII-PI16/00258 and co-funded by the European Union ERDF/ESF “A way to make Europe.” I.S.G. is funded by a Research Project Grant 2015111068 of the Basque Department of Health
    corecore