8,200 research outputs found
Noise Limited Computational Speed
In modern transistor based logic gates, the impact of noise on computation
has become increasingly relevant since the voltage scaling strategy, aimed at
decreasing the dissipated power, has increased the probability of error due to
the reduced switching threshold voltages. In this paper we discuss the role of
noise in a two state model that mimic the dynamics of standard logic gates and
show that the presence of the noise sets a fundamental limit to the computing
speed. An optimal idle time interval that minimizes the error probability, is
derived
Dust Transport in Protostellar Disks Through Turbulence and Settling
We apply ionization balance and MHD calculations to investigate whether
magnetic activity moderated by recombination on dust can account for the mass
accretion rates and the mid-infrared spectra and variability of protostellar
disks. The MHD calculations use the stratified shearing-box approach and
include grain settling and the feedback from the changing dust abundance on the
resistivity of the gas. The two-decade spread in accretion rates among T Tauri
stars is too large to result solely from variety in the grain size and stellar
X-ray luminosity, but can be produced by varying these together with the disk
magnetic flux. The diversity in the silicate bands can come from the coupling
of grain settling to the distribution of the magneto-rotational turbulence,
through three effects: (1) Recombination on grains yields a magnetically
inactive dead zone extending above two scale heights, while turbulence in the
magnetically active disk atmosphere overshoots the dead zone boundary by only
about one scale height. (2) Grains deep in the dead zone oscillate vertically
in waves driven by the turbulent layer above, but on average settle at the
laminar rates, so the interior of the dead zone is a particle sink and the disk
atmosphere becomes dust-depleted. (3) With sufficient depletion, the dead zone
is thinner and mixing dredges grains off the midplane. The MHD results also
show that the magnetic activity intermittently lifts clouds of dust into the
atmosphere. The photosphere height changes by up to one-third over a few
orbits, while the extinction along lines of sight grazing the disk surface
varies by factors of two over times down to 0.1 orbit. We suggest that the
changing shadows cast by the dust clouds on the outer disk are a cause of the
daily to monthly mid-infrared variability in some young stars. (Abridged.)Comment: ApJ in pres
Dead Zone Accretion Flows in Protostellar Disks
Planets form inside protostellar disks in a dead zone where the electrical
resistivity of the gas is too high for magnetic forces to drive turbulence. We
show that much of the dead zone nevertheless is active and flows toward the
star while smooth, large-scale magnetic fields transfer the orbital angular
momentum radially outward. Stellar X-ray and radionuclide ionization sustain a
weak coupling of the dead zone gas to the magnetic fields, despite the rapid
recombination of free charges on dust grains. Net radial magnetic fields are
generated in the magneto-rotational turbulence in the electrically conducting
top and bottom surface layers of the disk, and reach the midplane by Ohmic
diffusion. A toroidal component to the fields is produced near the midplane by
the orbital shear. The process is similar to the magnetization of the Solar
tachocline. The result is a laminar, magnetically-driven accretion flow in the
region where the planets form.Comment: 12 pages, 4 figure
Electron localization near Mott transition in organic superconductor -(BEDT-TTF)Cu[N(CN)Br
The effect of disorder on the electronic properties near the Mott transition
is studied in an organic superconductor
-(BEDT-TTF)Cu[N(CN)]Br, which is systematically irradiated
by X-ray. We observe that X-ray irradiation causes Anderson-type electron
localization due to molecular disorder. The resistivity at low temperatures
demonstrates variable range hopping conduction with Coulomb interaction. The
experimental results show clearly that the electron localization by disorder is
enhanced by the Coulomb interaction near the Mott transition.Comment: 5 pages, 4 figure
The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability: II. Saturation Level and Critical Magnetic Reynolds Number
The nonlinear evolution of the magnetorotational instability (MRI) in weakly
ionized accretion disks, including the effect of the Hall term and ohmic
dissipation, is investigated using local three-dimensional MHD simulations and
various initial magnetic field geometries. When the magnetic Reynolds number,
Re_M \equiv v_A^2 / \eta \Omega (where v_A is the Alfven speed, \eta the
magnetic diffusivity, and \Omega the angular frequency), is initially larger
than a critical value Re_{M, crit}, the MRI evolves into MHD turbulence in
which angular momentum is transported efficiently by the Maxwell stress. If
Re_M < Re_{M, crit}, however, ohmic dissipation suppresses the MRI, and the
stress is reduced by several orders of magnitude. The critical value is in the
range of 1 - 30 depending on the initial field configuration. The Hall effect
does not modify the critical magnetic Reynolds number by much, but enhances the
saturation level of the Maxwell stress by a factor of a few. We show that the
saturation level of the MRI is characterized by v_{Az}^2 / \eta \Omega, where
v_{Az} is the Alfven speed in the nonlinear regime along the vertical component
of the field. The condition for turbulence and significant transport is given
by v_{Az}^2 / \eta \Omega \gtrsim 1, and this critical value is independent of
the strength and geometry of the magnetic field or the size of the Hall term.
If the magnetic field strength in an accretion disk can be estimated
observationally, and the magnetic Reynolds number v_A^2 / \eta \Omega is larger
than about 30, this would imply the MRI is operating in the disk.Comment: 43 pages, 8 tables, 20 figures, accepted for publication in ApJ,
postscript version also available from
http://www.astro.umd.edu/~sano/publications
Axisymmetric Magnetorotational Instability in Viscous Accretion Disks
Axisymmetric magnetorotational instability (MRI) in viscous accretion disks
is investigated by linear analysis and two-dimensional nonlinear simulations.
The linear growth of the viscous MRI is characterized by the Reynolds number
defined as , where is the Alfv{\'e}n
velocity, is the kinematic viscosity, and is the angular
velocity of the disk. Although the linear growth rate is suppressed
considerably as the Reynolds number decreases, the nonlinear behavior is found
to be almost independent of . At the nonlinear evolutionary stage,
a two-channel flow continues growing and the Maxwell stress increases until the
end of calculations even though the Reynolds number is much smaller than unity.
A large portion of the injected energy to the system is converted to the
magnetic energy. The gain rate of the thermal energy, on the other hand, is
found to be much larger than the viscous heating rate. Nonlinear behavior of
the MRI in the viscous regime and its difference from that in the highly
resistive regime can be explained schematically by using the characteristics of
the linear dispersion relation. Applying our results to the case with both the
viscosity and resistivity, it is anticipated that the critical value of the
Lundquist number for active turbulence
depends on the magnetic Prandtl number in
the regime of and remains constant when , where and is the magnetic diffusivity.Comment: Accepted for publication in ApJ -- 18 pages, 9 figures, 1 tabl
MRI channel flows and their parasites
Local simulations of the magnetorotational instability (MRI) in accretion
disks can exhibit recurrent coherent structures called channel flows. The
formation and destruction of these structures may play a role in the
development and saturation of MRI-induced turbulence, and consequently help us
understand the time-dependent accretion behaviour of certain astrophysical
objects. Previous investigations have revealed that channel solutions are
attacked by various parasitic modes, foremost of which is an analogue of the
Kelvin-Helmholtz instability. We revisit these instabilities and show how they
relate to the classical instabilities of plasma physics, the kink and pinch
modes. However, we argue that in most cases channels emerge from developed
turbulence and are eventually destroyed by turbulent mixing, not by the
parasites. The exceptions are the clean isolated channels which appear in
systems near criticality or which emerge from low amplitude initial conditions.
These structures inevitably achieve large amplitudes and are only then
destroyed, giving rise to eruptive behaviour.Comment: 17 pages, 17 figures, accepted by MNRA
Turbulence and Steady Flows in 3D Global Stratified MHD Simulations of Accretion Disks
We present full 2 Pi global 3-D stratified MHD simulations of accretion
disks. We interpret our results in the context of proto-planetary disks. We
investigate the turbulence driven by the magneto-rotational instability (MRI)
using the PLUTO Godunov code in spherical coordinates with the accurate and
robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits
at the innermost radius of the domain to measure the overall strength of
turbulent motions and the detailed accretion flow pattern. We find that regions
within two scale heights of the midplane have a turbulent Mach number of about
0.1 and a magnetic pressure two to three orders of magnitude less than the gas
pressure, while outside three scale heights the magnetic pressure equals or
exceeds the gas pressure and the turbulence is transonic, leading to large
density fluctuations. The strongest large-scale density disturbances are spiral
density waves, and the strongest of these waves has m=5. No clear meridional
circulation appears in the calculations because fluctuating radial pressure
gradients lead to changes in the orbital frequency, comparable in importance to
the stress gradients that drive the meridional flows in viscous models. The net
mass flow rate is well-reproduced by a viscous model using the mean stress
distribution taken from the MHD calculation. The strength of the mean turbulent
magnetic field is inversely proportional to the radius, so the fields are
approximately force-free on the largest scales. Consequently the accretion
stress falls off as the inverse square of the radius.Comment: Accepted for publication in Ap
The Steady State Distribution of the Master Equation
The steady states of the master equation are investigated. We give two
expressions for the steady state distribution of the master equation a la the
Zubarev-McLennan steady state distribution, i.e., the exact expression and an
expression near equilibrium. The latter expression obtained is consistent with
recent attempt of constructing steady state theormodynamics.Comment: 6 pages, No figures. A mistake was correcte
A Local One-Zone Model of MHD Turbulence in Dwarf Nova Disks
The evolution of the magnetorotational instability (MRI) during the
transition from outburst to quiescence in a dwarf nova disk is investigated
using three-dimensional MHD simulations. The shearing box approximation is
adopted for the analysis, so that the efficiency of angular momentum transport
is studied in a small local patch of the disk: this is usually referred as to a
one-zone model. To take account of the low ionization fraction of the disk, the
induction equation includes both ohmic dissipation and the Hall effect. We
induce a transition from outburst to quiescence by an instantaneous decrease of
the temperature. The evolution of the MRI during the transition is found to be
very sensitive to the temperature of the quiescent disk. As long as the
temperature is higher than a critical value of about 2000 K, MHD turbulence and
angular momentum transport is sustained by the MRI. However, MHD turbulence
dies away within an orbital time if the temperature falls below this critical
value. In this case, the stress drops off by more than 2 orders of magnitude,
and is dominated by the Reynolds stress associated with the remnant motions
from the outburst. The critical temperature depends slightly on the distance
from the central star and the local density of the disk.Comment: 20 pages, 2 tables, 6 figures, accepted for publication in Ap
- …