35 research outputs found

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Assessment of the Electromagnetic Radiation Exposure at EV Charging Facilities

    No full text
    As the number of electric vehicles (EV) increases, the number of EV chargers also increases. Charging infrastructure will be built into our close environment. Because of this, the assessment of the electromagnetic field exposure generated from the charger is an important issue. This paper valuates the electromagnetic field exposure of six EV chargers. To assess the level of exposure of EV chargers, the electromagnetic fields from six chargers were measured and analyzed. In addition, measured electromagnetic field exposure levels were evaluated against ICNIRP guidelines. Higher electromagnetic fields were measured with standard chargers than with fast chargers. For the fast charger in the charging state, the magnetic field increased with the charging current. Electromagnetic field exposures for all six chargers did not exceed standard limits. The results of the assessment of the electromagnetic field exposure of the six EV chargers will contribute to the establishment of standards for the evaluation of the electromagnetic field exposure of the EV chargers in the future

    Resonant-Based Wireless Power Transfer System Using Electric Coupling for Transparent Wearable Devices and Null Power Points

    No full text
    This study provides information on the transfer efficiency of four-plate-structured copper plate and metal mesh sheet couplers, the cause of null-power point. The couplers are compared based on the equivalent circuit model analysis, experimental results of fabricated couplers, and simulation results of the High-Frequency Structure Simulator (HFSS) tool. It was confirmed that the metal mesh material exhibits the same performance as the existing copper plate and can be fully used as a coupler material for the electrical resonance wireless power transfer system. In addition, the null-power point phenomenon is only determined by the main coupling and cross coupling between the transmitter and receiver, which are most dominantly affected by the coupler structure

    Characteristics analysis of resonance-based wireless power transfer using magnetic coupling and electric coupling

    No full text
    This study analyses the wireless power transfer of the resonance-based magnetic coupling method and resonance-based electric coupling method and provides information about the characteristics of each. To compare the characteristics of each method, the power transfer efficiency was analysed according to the transfer alignment and misalignment distance between the transceivers. More specifically, they were theoretically analysed through equivalent circuit models, and the results were verified through electromagnetic numerical analysis simulation and the fabrication and experimental results of a wireless power transfer coupler. Although both methods differ according to the coupling method, in terms of power transfer efficiency, it was found that they are determined by the same physical phenomena. Furthermore, in both methods, a null-power point occurred during misalignment between the transceivers. The misalignment distance within which the null-power point occurred is intrinsically determined by the structure of the resonant coupler

    Loan relation with foreign banks and information asymmetry: evidence from earnings management by local firms in Korea

    No full text
    Previous research shows that foreign (domestic) banks rely more on ‘hard’ (‘soft’) information in their lending decisions and such approaches may give a motivation for the local firms to improve their credit scores by, for example, overstating earnings. The paper develops a theoretical model and empirically tests the model using actual data from Korea. The model predicts that local firms tend to overstate earnings when they increase the loan relations with foreign banks and the proportion of local firms with earnings management increases as the recoverability of foreign banks decreases (increases) in the higher (lower) level of recoverability. The results of the empirical test are consistent with the predictions by the model. We also discuss the implications of the study and an extension for the future study

    Fiber composite slices for multiplexed immunoassays

    No full text
    Fabrication methods for the development of multiplexed immunoassay platforms primarily depend on the individual functionalization of reaction chambers to achieve a heterogeneous reacting substrate composition, which increases the overall manufacturing time and cost. Here, we describe a new type of low-cost fabrication method for a scalable immunoassay platform based on cotton threads. The manufacturing process involves the fabrication of functionalized fibers and the arrangement of these fibers into a bundle; this bundle is then sectioned to make microarray-like particles with a predefined surface architecture. With these sections, composed of heterogeneous thread fragments with different types of antibodies, we demonstrated quantitative and 7-plex immunoassays. We expect that this methodology will prove to be a versatile, low-cost, and highly scalable method for the fabrication of multiplexed bioassay platforms. (C) 2015 AIP Publishing LLCope

    An Efficient Approach to Consolidating Job Schedulers in Traditional Independent Scientific Workflows

    No full text
    The current research paradigm is one of data-driven research. Researchers are beginning to deploy computer facilities to produce and analyze large amounts of data. As requirements for computing power grow, data processing in traditional workstations is always under pressure for efficient resource management. In such an environment, a tremendous amount of data is being processed using parallel computing for efficient and effective research results. HTCondor, as an example, provides computing power for data analysis for researchers. Although such a system works well in a traditional computing cluster environment, we need an efficient methodology to meet the ever-increasing demands of computing using limited resources. In this paper, we propose an approach to integrating clusters that can share their computing power on the basis of a priority policy. Our approach makes it possible to share worker nodes while maintaining the resources allocated to each group. In addition, we have utilized the historical data of user usage in order to analyze problems that have occurred during job execution due to resource sharing and the actual operating results. Our findings can provide a reasonable guideline for limited computing powers shared by multiple scientific groups

    Application of Microwave 3D SAR Imaging Technique for Evaluation of Corrosion in Steel Rebars Embedded in Cement-Based Structures

    No full text
    This paper presents and discusses the attributes and results of using wideband microwave 3D SAR-based imaging technique for evaluation of reinforced cement-based structures. The technique was used to detect corrosion and thinning of reinforcing steel bars and its potential was demonstrated through experiments for different bar sizes, depth of rebar locations, and spacing between rebars. The results of a limited and preliminary investigation in which thinning of rebars with and without rust in two mortar samples were obtained at three frequency bands covering the frequency range from 8.2 GHz - 26.5 GHz
    corecore