3,478 research outputs found
Recommended from our members
Of impacts, agents, and functions: An interdisciplinary meta-review of smart home energy management systems research
Smart home energy management technologies (SHEMS) have long been viewed as a promising opportunity to manage the way households use energy. Research on this topic has emerged across a variety of disciplines, focusing on different pieces of the SHEMS puzzle without offering a holistic vision of how these technologies and their users will influence home energy use moving forward. This paper presents the results of a systematic, interdisciplinary meta-review of SHEMS literature, assessing the extent to which it discusses the role of various SHEMS components in driving energy benefits. Results reveal a bias towards technical perspectives and controls approaches that seek to drive energy impacts such as load management and energy savings through SHEMS without user or third-party participation. Not only are techno-centric approaches more common, there is also a lack of integration of these approaches with user-centric, information-based solutions for driving energy impacts. These results suggest future work should investigate more holistic solutions for optimal impacts on household energy use. We hope these results will provoke a broader discussion about how to advance research on SHEMS to capitalize on their potential contributions to demand-side management initiatives moving forward
Parameter estimation and inference for stochastic reaction-diffusion systems: application to morphogenesis in D. melanogaster
Background: Reaction-diffusion systems are frequently used in systems biology to model developmental and signalling processes. In many applications, count numbers of the diffusing molecular species are very low, leading to the need to explicitly model the inherent variability using stochastic methods. Despite their importance and frequent use, parameter estimation for both deterministic and stochastic reaction-diffusion systems is still a challenging problem.
Results: We present a Bayesian inference approach to solve both the parameter and state estimation problem for stochastic reaction-diffusion systems. This allows a determination of the full posterior distribution of the parameters (expected values and uncertainty). We benchmark the method by illustrating it on a simple synthetic experiment. We then test the method on real data about the diffusion of the morphogen Bicoid in Drosophila melanogaster. The results show how the precision with which parameters can be inferred varies dramatically, indicating that the ability to infer full posterior distributions on the parameters can have important experimental design consequences.
Conclusions: The results obtained demonstrate the feasibility and potential advantages of applying a Bayesian approach to parameter estimation in stochastic reaction-diffusion systems. In particular, the ability to estimate credibility intervals associated with parameter estimates can be precious for experimental design. Further work, however, will be needed to ensure the method can scale up to larger problems
Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging
Locally adaptive differential frames (gauge frames) are a well-known
effective tool in image analysis, used in differential invariants and
PDE-flows. However, at complex structures such as crossings or junctions, these
frames are not well-defined. Therefore, we generalize the notion of gauge
frames on images to gauge frames on data representations defined on the extended space of positions and
orientations, which we relate to data on the roto-translation group ,
. This allows to define multiple frames per position, one per
orientation. We compute these frames via exponential curve fits in the extended
data representations in . These curve fits minimize first or second
order variational problems which are solved by spectral decomposition of,
respectively, a structure tensor or Hessian of data on . We include
these gauge frames in differential invariants and crossing preserving PDE-flows
acting on extended data representation and we show their advantage compared
to the standard left-invariant frame on . Applications include
crossing-preserving filtering and improved segmentations of the vascular tree
in retinal images, and new 3D extensions of coherence-enhancing diffusion via
invertible orientation scores
Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection
A three-step laser excitation scheme is used to make absolute frequency
measurements of highly excited nF7/2 Rydberg states in 85Rb for principal
quantum numbers n=33-100. This work demonstrates the first absolute frequency
measurements of rubidium Rydberg levels using a purely optical detection
scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler
free signals are detected via purely optical means. All of the frequency
measurements are made using a wavemeter which is calibrated against a GPS
disciplined self-referenced optical frequency comb. We find that the measured
levels have a very high frequency stability, and are especially robust to
electric fields. The apparatus has allowed measurements of the states to an
accuracy of 8.0MHz. The new measurements are analysed by extracting the
modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy
Comparison of Bond Character in Hydrocarbons and Fullerenes
We present a comparison of the bond polarizabilities for carbon-carbon bonds
in hydrocarbons and fullerenes, using two different models for the fullerene
Raman spectrum and the results of Raman measurements on ethane and ethylene. We
find that the polarizabilities for single bonds in fullerenes and hydrocarbons
compare well, while the double bonds in fullerenes have greater polarizability
than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.
Numerical Approaches for Linear Left-invariant Diffusions on SE(2), their Comparison to Exact Solutions, and their Applications in Retinal Imaging
Left-invariant PDE-evolutions on the roto-translation group (and
their resolvent equations) have been widely studied in the fields of cortical
modeling and image analysis. They include hypo-elliptic diffusion (for contour
enhancement) proposed by Citti & Sarti, and Petitot, and they include the
direction process (for contour completion) proposed by Mumford. This paper
presents a thorough study and comparison of the many numerical approaches,
which, remarkably, is missing in the literature. Existing numerical approaches
can be classified into 3 categories: Finite difference methods, Fourier based
methods (equivalent to -Fourier methods), and stochastic methods (Monte
Carlo simulations). There are also 3 types of exact solutions to the
PDE-evolutions that were derived explicitly (in the spatial Fourier domain) in
previous works by Duits and van Almsick in 2005. Here we provide an overview of
these 3 types of exact solutions and explain how they relate to each of the 3
numerical approaches. We compute relative errors of all numerical approaches to
the exact solutions, and the Fourier based methods show us the best performance
with smallest relative errors. We also provide an improvement of Mathematica
algorithms for evaluating Mathieu-functions, crucial in implementations of the
exact solutions. Furthermore, we include an asymptotical analysis of the
singularities within the kernels and we propose a probabilistic extension of
underlying stochastic processes that overcomes the singular behavior in the
origin of time-integrated kernels. Finally, we show retinal imaging
applications of combining left-invariant PDE-evolutions with invertible
orientation scores.Comment: A final and corrected version of the manuscript is Published in
Numerical Mathematics: Theory, Methods and Applications (NM-TMA), vol. (9),
p.1-50, 201
Waveguide-based OPO source of entangled photon pairs
In this paper we present a compact source of narrow-band energy-time
entangled photon pairs in the telecom regime based on a Ti-indiffused
Periodically Poled Lithium Niobate (PPLN) waveguide resonator, i.e. a waveguide
with end-face dielectric multi-layer mirrors. This is a monolithic doubly
resonant Optical Parametric Oscillator (OPO) far below threshold, which
generates photon pairs by Spontaneous Parametric Down Conversion (SPDC) at
around 1560nm with a 117MHz (0.91 pm)- bandwidth. A coherence time of 2.7 ns is
estimated by a time correlation measurement and a high quality of the entangled
states is confirmed by a Bell-type experiment. Since highly coherent
energy-time entangled photon pairs in the telecom regime are suitable for long
distance transmission and manipulation, this source is well suited to the
requirements of quantum communication.Comment: 13 page
Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution
We propose two strategies to improve the quality of tractography results
computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both
methods are based on the same PDE framework, defined in the coupled space of
positions and orientations, associated with a stochastic process describing the
enhancement of elongated structures while preserving crossing structures. In
the first method we use the enhancement PDE for contextual regularization of a
fiber orientation distribution (FOD) that is obtained on individual voxels from
high angular resolution diffusion imaging (HARDI) data via constrained
spherical deconvolution (CSD). Thereby we improve the FOD as input for
subsequent tractography. Secondly, we introduce the fiber to bundle coherence
(FBC), a measure for quantification of fiber alignment. The FBC is computed
from a tractography result using the same PDE framework and provides a
criterion for removing the spurious fibers. We validate the proposed
combination of CSD and enhancement on phantom data and on human data, acquired
with different scanning protocols. On the phantom data we find that PDE
enhancements improve both local metrics and global metrics of tractography
results, compared to CSD without enhancements. On the human data we show that
the enhancements allow for a better reconstruction of crossing fiber bundles
and they reduce the variability of the tractography output with respect to the
acquisition parameters. Finally, we show that both the enhancement of the FODs
and the use of the FBC measure on the tractography improve the stability with
respect to different stochastic realizations of probabilistic tractography.
This is shown in a clinical application: the reconstruction of the optic
radiation for epilepsy surgery planning
A new Manifestation of Atomic Parity Violation in Cesium: a Chiral Optical Gain induced by linearly polarized 6S-7S Excitation
We have detected, by using stimulated emission, an Atomic Parity Violation
(APV) in the form of a chiral optical gain of a cesium vapor on the 7S -
6P transition,consecutive to linearly polarized 6S-7S excitation. We
demonstrate the validity of this detection method of APV, by presenting a 9%
accurate measurement of expected sign and magnitude. We underline several
advantages of this entirely new approach in which the cylindrical symmetry of
the set-up can be fully exploited. Future measurements at the percent level
will provide an important cross-check of an existing more precise result
obtained by a different method.Comment: 4 pages, 2 figure
Creating and observing N-partite entanglement with atoms
The Mermin inequality provides a criterion for experimentally ruling out
local-realistic descriptions of multiparticle systems. A violation of this
inequality means that the particles must be entangled, but does not, in
general, indicate whether N-partite entanglement is present. For this, a
stricter bound is required. Here we discuss this bound and use it to propose
two different schemes for demonstrating N-partite entanglement with atoms. The
first scheme involves Bose-Einstein condensates trapped in an optical lattice
and the second uses Rydberg atoms in microwave cavities.Comment: 12 pages, 4 figure
- …
