753 research outputs found
The Multifragmentation Freeze--Out Volume in Heavy Ion Collisions
The reduced velocity correlation function for fragments from the reaction Fe
+ Au at 100 A~MeV bombarding energy is investigated using the
dynamical--statistical approach QMD+SMM and compared to experimental data to
extract the Freeze--Out volume assuming simultaneous multifragmentation.Comment: 8 pages; 3 uuencoded figures available with figures command, LateX,
UCRL-J-1157
High-power, kilojoule laser interactions with near-critical density plasma
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98754/1/PhysPlasmas_18_056706.pd
First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions
The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions
Correspondences and Quantum Description of Aharonov-Bohm and Aharonov-Casher Effects
We establish systematic consolidation of the Aharonov-Bohm and
Aharonov-Casher effects including their scalar counterparts. Their formal
correspondences in acquiring topological phases are revealed on the basis of
the gauge symmetry in non-simply connected spaces and the adiabatic condition
for the state of magnetic dipoles. In addition, investigation of basic two-body
interactions between an electric charge and a magnetic dipole clarifies their
appropriate relative motions and discloses physical interrelations between the
effects. Based on the two-body interaction, we also construct an exact
microscopic description of the Aharonov-Bohm effect, where all the elements are
treated on equal footing, i.e., magnetic dipoles are described
quantum-mechanically and electromagnetic fields are quantized. This microscopic
analysis not only confirms the conventional (semiclassical) results and the
topological nature but also allows one to explore the fluctuation effects due
to the precession of the magnetic dipoles with the adiabatic condition relaxed
Assessment of ion kinetic effects in shock-driven inertial confinement fusion implosions using fusion burn imaging
The significance and nature of ion kinetic effects in D3He-filled, shock-driven inertial confinement
fusion implosions are assessed through measurements of fusion burn profiles. Over this series of
experiments, the ratio of ion-ion mean free path to minimum shell radius (the Knudsen number,
NK) was varied from 0.3 to 9 in order to probe hydrodynamic-like to strongly kinetic plasma
conditions; as the Knudsen number increased, hydrodynamic models increasingly failed to match
measured yields, while an empirically-tuned, first-step model of ion kinetic effects better captured
the observed yield trends [Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014)]. Here, spatially
resolved measurements of the fusion burn are used to examine kinetic ion transport effects in
greater detail, adding an additional dimension of understanding that goes beyond zero-dimensional
integrated quantities to one-dimensional profiles. In agreement with the previous findings, a comparison
of measured and simulated burn profiles shows that models including ion transport effects
are able to better match the experimental results. In implosions characterized by large Knudsen
numbers (NK3), the fusion burn profiles predicted by hydrodynamics simulations that exclude
ion mean free path effects are peaked far from the origin, in stark disagreement with the experimentally
observed profiles, which are centrally peaked. In contrast, a hydrodynamics simulation that
includes a model of ion diffusion is able to qualitatively match the measured profile shapes.
Therefore, ion diffusion or diffusion-like processes are identified as a plausible explanation of the
observed trends, though further refinement of the models is needed for a more complete and
quantitative understanding of ion kinetic effects
Model validation for a noninvasive arterial stenosis detection problem
Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)
Measurements of Ion Stopping Around the Bragg Peak in High-Energy-Density Plasmas
For the first time, quantitative measurements of ion stopping at energies around the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T[subcontract e]) and electron number density (n[subcontract e]) in the range of 0.5–4.0 keV and 3 × 10[superscript 22] to 3 × 10[superscript 23]  cm[superscript −3] have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T[subscript e] with n[subscript e]. The importance of including quantum diffraction is also demonstrated in the stopping-power modeling of high-energy-density plasmas.United States. Dept. of Energy (Grant DE-FG03-03SF22691)Lawrence Livermore National Laboratory (Subcontract Grant B504974)University of Rochester. Laboratory for Laser Energetics (Subcontract Grant 412160-001G
Neutron Bang Time Detector Based on a Light Pipe
A neutron bang time detector consisting of a scintillator, light pipe, photomultiplier tube (PMT), and high-bandwidth oscilloscope has been implemented on the 60-beam, 30-kJ OMEGA Laser Facility at the University of Rochester's Laboratory for Laser Energetics. Light from the scintillator, located 23 cm from the target, is transmitted outside the target bay through a 9.6-m-long, 2-in.-diam polished stainless steel pipe to the PMT. The PMT signal is recorded by two channels of a 6-GHz, 10-GS/s Tektronix 6604 oscilloscope. The OMEGA optical fiducial pulse train is recorded on the third oscilloscope channel using a fast photodiode to provide the timing reference to the laser. The bang-time detector is absolutely calibrated in time and is able to measure bang time for neutron yields above 1 x 10{sup 9} with accuracy of better than 25 ps
Recommended from our members
The Optical Lightpipe as a High-Bandwidth Fusion Diagnostic
A recent series of experiments at the University of Rochester Laboratory for Laser Energetics OMEGA facility studied the feasibility of using radiation-to-light converters and high bandwidth optical signal transmission to remote recording devices as an alternate nuclear diagnostic method. A prototype system included a radiation-to-light converter, a multiple-section light pipe consisting of stainless steel tubes with polished interiors and turning mirrors, and a streak camera or photomultiplier/digitizer combination for signal recording. Several different radiation-to-light converters (scintillators, glasses, plastics, and pressurized CO{sub 2}) performed well and produced predictable optical emissions. The lightpipe transmitted high-bandwidth optical signals to the recording stations. Data were recorded with the streak camera, the photomultiplier/digitizer, and with both recorders simultaneously
- …