226 research outputs found
Gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic nanodots
The authors investigated the gyrotropic linear and nonlinear motions of a magnetic vortex in soft magnetic cylindrical nanodots under in-plane oscillating magnetic fields of different frequencies and amplitudes, by employing both micromagnetic simulations and the numerical solutions of Thiele's equation of motion [Phys. Rev. Lett. 30, 230 (1973)]. Not only noncircular elliptical vortex-core orbital trajectories in the linear regime but also complex trajectories including stadiumlike shape in the nonlinear regime were observed from the micromagnetic simulations and were in excellent agreement with the numerical solutions of the analytical equations of motion. It was verified that the numerical solutions of Thiele's equation are promisingly applicable in order to predict and describe well such complex vortex gyrotropic linear and nonlinear motions in both the initial transient and later steady states. These results enrich the fundamental understanding of the linear and nonlinear motions of vortices in confined magnetic elements in response to oscillating driving forces.open352
Spin-wave interference
Spin-wave interference is demonstrated in the micromagnetic modeling of a specially designed geometry made of variously shaped magnetic thin-film waveguides. When spin waves are diffracted through two separate openings, corresponding to the two pinholes in the second screen of Young's apparatus, they interfere constructively or destructively in a magnetic medium, thereby showing distinct interference patterns. Furthermore, the radiation, propagation, transmission, and dispersion behaviors of spin waves as well as the filtering of their lower frequencies are investigated in the present modeling study. These results directly confirm not only the wave characteristics of spin waves traveling at ultrafast speeds in variously shaped magnetic waveguides but also their interference effect, that is similar to that observed in well-known Young's double slit experiment with light.open312
Coupled breathing modes in one-dimensional Skyrmion lattices
We explored strong coupling of dynamic breathing modes in one-dimensional
(1D) skyrmion lattices periodically arranged in thin-film nanostrips. The
coupled breathing modes exhibit characteristic concave-down dispersions that
represent the in-phase high-energy mode at zero wavenumber (k=0) and the
anti-phase low-energy mode at the Brillouin zone boundary (k=kBZ). The band
width of the allowed modes increases with decreasing inter-distance between
nearest-neighboring skyrmions. Furthermore, the collective breathing modes
propagate very well through the thin-film nanostrips, as fast as 200 ~ 700 m/s,
which propagation is controllable by the strength of magnetic fields applied
perpendicularly to the film plane. The breathing modes in 1D skyrmion lattices
potentially formed in such nanostrips possibly can be used as information
carriers in information processing devices
Origin of the increased velocities of domain wall motions in soft magnetic thin-film nanostripes beyond the velocity-breakdown regime
It is known that oscillatory domain-wall (DW) motions in soft magnetic
thin-film nanostripes above the Walker critical field lead to a remarkable
reduction in the average DW velocities. In a much-higher-field region beyond
the velocity-breakdown regime, however, the DW velocities have been found to
increase in response to a further increase of the applied field. We report on
the physical origin and detailed mechanism of this unexpected behavior. We
associate the mechanism with the serial dynamic processes of the nucleation of
vortex-antivortex (V-AV) pairs inside the stripe or at its edges, the
non-linear gyrotropic motions of Vs and AVs, and their annihilation process.
The present results imply that a two-dimensional soliton model is required for
adequate interpretation of DW motions in the linear- and oscillatory-DW-motion
regimes as well as in the beyond-velocity-breakdown regime.Comment: 16 pages, 3 figure
Understanding eigenfrequency shifts observed in vortex gyrotropic motions in a magnetic nanodot driven by spin-polarized out-of-plane dccurrent
We observed sizable eigenfrequency shifts in spin-polarized dc-current-driven vortex gyrotropic motions in a soft magnetic nanodot, and clarified the underlying physics through micromagnetic numerical calculations. It was found that the vortex eigenfrequency is changed to higher (lower) values with increasing Oersted field (OH) strength associated with the out-of-plane dc current for the vortex chirality parallel (antiparallel) to the rotation sense of the OH circumferential in-plane orientation. The eigenfrequency shift was found to be linearly proportional to the current density j0 in the linear regime as in ?? D ≃?? j0 / G, where G is the gyrovector constant and is a positive constant, e.g., 1.9?? 10-8 erg/A for a model Permalloy dot of 300 nm diameter and 20 nm thickness. This behavior originates from the sizable contribution of the OH to the effective potential energy of a displaced vortex core in the gyrotropic motion. The present results reveal that D, an intrinsic dynamic characteristic of a given nanodot vortex state, is controllable by changes in both the density and direction of spin-polarized out-of-plane dc currents.open191
- …
