3,428 research outputs found

    Universal convex covering problems under translation and discrete rotations

    Full text link
    We consider the smallest-area universal covering of planar objects of perimeter 2 (or equivalently closed curves of length 2) allowing translation and discrete rotations. In particular, we show that the solution is an equilateral triangle of height 1 when translation and discrete rotation of π\pi are allowed. Our proof is purely geometric and elementary. We also give convex coverings of closed curves of length 2 under translation and discrete rotations of multiples of π/2\pi/2 and 2π/32\pi/3. We show a minimality of the covering for discrete rotation of multiples of π/2\pi/2, which is an equilateral triangle of height smaller than 1, and conjecture that the covering is the smallest-area convex covering. Finally, we give the smallest-area convex coverings of all unit segments under translation and discrete rotations 2π/k2\pi/k for all integers k3k\ge 3

    Bacterial community analysis of sediment seep in Kagoshima Bay, Japan

    Get PDF
    1902-1906Microorganisms in the deep-sea environments such as hydrothermal vent and cold-seep regions are primary energy producers and an important community in these ecosystems. We have used 454-Pyrosequencing and 16S rDNA clone library methods to determine the diversity of bacteria in the sediment of the seep regions around the vestimentiferan tubeworm habitat at Kagoshima Bay. Taxonomic composition from both libraries suggested that 454-Pyrosequencing methods can represent more diverse groups than the conventional clone library methods. Most abundant taxa with higher folds were Proteobacteria and Bacteroidetes found in both methods. Through the 454-Pyrosequencing method, we were able to detect underrepresented taxa as well as non-detectable taxa. This analyses and comparison provide bacterial taxonomic group detection efficiency of both library types and emphasize the different uses and utilities for exploring the unknown microbial domain

    Violet-light spontaneous and stimulated emission from ultrathin In-rich InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor deposition

    Get PDF
    We investigated the spontaneous and stimulated emission properties of violet-light-emitting ultrathin In-rich InGaN/GaN multiple quantum wells (MQWs) with indium content of 60%-70%. The Stokes shift was smaller than that of In-poor InGaN MQWs, and the emission peak position at 3.196 eV was kept constant with increasing pumping power, indicating negligible quantum confined Stark effect in ultrathin In-rich InGaN MQWs despite of high indium content. Optically pumped stimulated emission performed at room temperature was observed at 3.21 eV, the high-energy side of spontaneous emission, when the pumping power density exceeds ???31 kW/ cm2.open6

    The Characteristics of Action Potentials in Primo Vessels and the Effects of Acetylcholine Injection to the Action Potentials

    Get PDF
    In a previous study, we found that Primo vessels generate different action potentials in smooth muscles, but this study compared the pulse shape to distinguish the two tissues. Thus, a more sophisticated extracellular experiment was performed in this study using an acetylcholine injection; we then observed changes in the amplitude, FWHM (full width at half maximum), and period to explore Primo vessel function. A third type of pulse was recorded for Primo vessels. We observed fast depolarizing and repolarizing phases for this pulse. Further, its FWHM was 30 ms between smooth muscles and neurons. Acetylcholine affected only the period. The amplitude and FWHM were consistent after injection. Primo-vessels generated action potentials at twice the frequency after injection. From the results, we speculate that Primo-vessels perform a role in transferring signals in a different manner, which may be relevant for acupuncture treatment

    Observation of Young's Double-Slit Interference with the Three-Photon N00N State

    Full text link
    Spatial interference of quantum mechanical particles exhibits a fundamental feature of quantum mechanics. A two-mode entangled state of N particles known as N00N state can give rise to non-classical interference. We report the first experimental observation of a three-photon N00N state exhibiting Young's double-slit type spatial quantum interference. Compared to a single-photon state, the three-photon entangled state generates interference fringes that are three times denser. Moreover, its interference visibility of 0.49±0.090.49 \pm 0.09 is well above the limit of 0.1 for spatial super-resolution of classical origin. The demonstration of spatial quantum interference by a N00N state composed of more than two photons represents an important step towards applying quantum entanglement to technologies such as lithography and imaging

    The Singer's Formant and Speaker's Ring Resonance: A Long-Term Average Spectrum Analysis

    Get PDF
    ObjectivesWe previously showed that a trained tenor's voice has the conventional singer's formant at the region of 3 kHz and another energy peak at 8-9 kHz. Singers in other operatic voice ranges are assumed to have the same peak in their singing and speaking voice. However, to date, no specific measurement of this has been made.MethodsTenors, baritones, sopranos and mezzo sopranos were chosen to participate in this study of the singer's formant and the speaker's ring resonance. Untrained males (n=15) and females (n=15) were included in the control group. Each subject was asked to produce successive /a/ vowel sounds in their singing and speaking voice. For singing, the low pitch was produced in the chest register and the high notes in the head register. We collected the data on the long-term average spectra of the speaking and singing voices of the trained singers and the control groups.ResultsFor the sounds produced from the head register, a significant energy concentration was seen in both 2.2-3.4 kHz and 7.5-8.4 kHz regions (except for the voices of the mezzo sopranos) in the trained singer group when compared to the control groups. Also, the chest register had a significant energy concentration in the 4 trained singer groups at the 2.2-3.1 kHz and 7.8-8.4 kHz. For speaking sound, all trained singers had a significant energy concentration at 2.2-5.3 kHz and sopranos had another energy concentration at 9-10 kHz.ConclusionThe results of this study suggest that opera singers have more energy concentration in the singer's formant/speaker's ring region, in both singing and speaking voices. Furthermore, another region of energy concentration was identified in opera singer's singing sound and in sopranos' speaking sound at 8-9 kHz. The authors believe that these energy concentrations may contribute to the rich voice of trained singers
    corecore