250 research outputs found

    Calculations of Arctic ozone chemistry using objectively analyzed data in a 3-D CTM

    Get PDF
    A three-dimensional chemical transport model (CTM) (Kaminski, 1992) has been used to study the evolution of the Arctic ozone during the winter of 1992. The continuity equation has been solved using a spectral method with Rhomboidal 15 (R15) truncation and leap-frog time stepping. Six-hourly meteorological fields from the Canadian Meteorological Center global objective analysis routines run at T79 were degraded to the model resolution. In addition, they were interpolated to the model time grid and were used to drive the model from the surface to 10 mb. In the model, processing of Cl(x) occurred over Arctic latitudes but some of the initial products were still present by mid-January. Also, the large amounts of ClO formed in the model in early January were converted to ClNO3. The results suggest that the model resolution may be insufficient to resolve the details of the Arctic transport during this time period. In particular, the wind field does not move the ClO(x) 'cloud' to the south over Europe as seen in the MLS measurements

    Modelling stratospheric polar ozone using objective analysis

    Get PDF
    We have studied the development of the austral ozone hole using a 3-D spectral chemical transport model at R15 resolution for the period 15th September to 15th October, 1991. The model is driven by objectively analyzed wind fields obtained from the Canadian Meteorological Center and uses the chemical module developed by Kaminski (1992). Although extensive processing of NO(y) and Cl(x) occurs within the model, the ozone hole that develops appears shallow and ephemeral. Analysis of the results indicate that the meridional transport of ozone is sufficient to overwhelm the substantial chemical depletion that does occur. We suggest that the low resolution objectively analyzed data used is unable to capture the essential isolated nature of the vortex

    Fabrication and Characterization of Topological Insulator Bi2_2Se3_3 Nanocrystals

    Full text link
    In the recently discovered class of materials known as topological insulators, the presence of strong spin-orbit coupling causes certain topological invariants in the bulk to differ from their values in vacuum. The sudden change of invariants at the interface results in metallic, time reversal invariant surface states whose properties are useful for applications in spintronics and quantum computation. However, a key challenge is to fabricate these materials on the nanoscale appropriate for devices and probing the surface. To this end we have produced 2 nm thick nanocrystals of the topological insulator Bi2_2Se3_3 via mechanical exfoliation. For crystals thinner than 10 nm we observe the emergence of an additional mode in the Raman spectrum. The emergent mode intensity together with the other results presented here provide a recipe for production and thickness characterization of Bi2_2Se3_3 nanocrystals.Comment: 4 pages, 3 figures (accepted for publication in Applied Physics Letters

    Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis

    Get PDF
    BackgroundAtopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a highly significant risk factor for atopic disease, but the molecular mechanisms leading to dermatitis remain unclear.ObjectiveWe sought to interrogate tissue-specific variations in the expressed genome in the skin of children with AD and to investigate underlying pathomechanisms in atopic skin.MethodsWe applied single-molecule direct RNA sequencing to analyze the whole transcriptome using minimal tissue samples. Uninvolved skin biopsy specimens from 26 pediatric patients with AD were compared with site-matched samples from 10 nonatopic teenage control subjects. Cases and control subjects were screened for FLG genotype to stratify the data set.ResultsTwo thousand four hundred thirty differentially expressed genes (false discovery rate, P < .05) were identified, of which 211 were significantly upregulated and 490 downregulated by greater than 2-fold. Gene ontology terms for “extracellular space” and “defense response” were enriched, whereas “lipid metabolic processes” were downregulated. The subset of FLG wild-type cases showed dysregulation of genes involved with lipid metabolism, whereas filaggrin haploinsufficiency affected global gene expression and was characterized by a type 1 interferon–mediated stress response.ConclusionThese analyses demonstrate the importance of extracellular space and lipid metabolism in atopic skin pathology independent of FLG genotype, whereas an aberrant defense response is seen in subjects with FLG mutations. Genotype stratification of the large data set has facilitated functional interpretation and might guide future therapy development

    X-ray Absorption Spectroscopy Study of the Effect of Rh Doping in Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e

    Get PDF
    We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in which Rh doping can weaken the (Ir Jeff = 1/2)–(O 2p) orbital hybridisation in the in-planar Rh-O-Ir bond networks

    Charge-spin correlation in van der Waals antiferromagenet NiPS3

    Get PDF
    Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption and photoemission spectroscopy, and density-functional calculations. NiPS3 displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting a strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission and optical spectra support a self-doped ground state in NiPS3. Our work demonstrates that layered transition-metal trichalcogenide magnets are a useful candidate for the study of correlated-electron physics in two-dimensional magnetic material.Comment: 6 pages, 3 figur
    corecore