565 research outputs found

    Aetiological role of viral and bacterial infections in acute adult lower respiratory tract infection (LRTI) in primary care.

    Get PDF
    BACKGROUND: Lower respiratory tract infections (LRTI) are a common reason for consulting general practitioners (GPs). In most cases the aetiology is unknown, yet most result in an antibiotic prescription. The aetiology of LRTI was investigated in a prospective controlled study. METHODS: Eighty adults presenting to GPs with acute LRTI were recruited together with 49 controls over 12 months. Throat swabs, nasal aspirates (patients and controls), and sputum (patients) were obtained and polymerase chain reaction (PCR) and reverse transcriptase polymerase chain reaction (RT-PCR) assays were used to detect Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, influenza viruses (AH1, AH3 and B), parainfluenza viruses 1-3, coronaviruses, respiratory syncytial virus, adenoviruses, rhinoviruses, and enteroviruses. Standard sputum bacteriology was also performed. Outcome was recorded at a follow up visit. RESULTS: Potential pathogens were identified in 55 patients with LRTI (69%) and seven controls (14%; p<0.0001). The identification rate was 63% (viruses) and 26% (bacteria) for patients and 12% (p<0.0001) and 6% (p = 0.013), respectively, for controls. The most common organisms identified in the patients were rhinoviruses (33%), influenza viruses (24%), and Streptococcus pneumoniae (19%) compared with 2% (p<0.001), 6% (p = 0.013), and 4% (p = 0.034), respectively, in controls. Multiple pathogens were identified in 18 of the 80 LRTI patients (22.5%) and in two of the 49 controls (4%; p = 0.011). Atypical organisms were rarely identified. Cases with bacterial aetiology were clinically indistinguishable from those with viral aetiology. CONCLUSION: Patients presenting to GPs with acute adult LRTI predominantly have a viral illness which is most commonly caused by rhinoviruses and influenza viruses

    The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees

    Get PDF
    yesBackground: Minimum toe clearance is a critical gait event because it coincides with peak forward velocity of the swing foot, and thus, there is an increased risk of tripping and falling. Trans-tibial amputees have increased risk of tripping compared to able-bodied individuals. Assessment of toe clearance during gait is thus clinically relevant. In able-bodied gait, minimum toe clearance increases with faster walking speeds, and it is widely reported that there is synchronicity between when peak swing-foot velocity and minimum toe clearance occur. There are no such studies involving lower-limb amputees. Objectives: To determine the effects of walking speed on minimum toe clearance and on the temporal relationship between clearance and peak swing-foot velocity in unilateral trans-tibial amputees. Study design: Cross-sectional. Methods: A total of 10 trans-tibial participants walked at slow, customary and fast speeds. Minimum toe clearance and the timings of minimum toe clearance and peak swing-foot velocity were determined and compared between intact and prosthetic sides. Results: Minimum toe clearance was reduced on the prosthetic side and, unlike on the intact side, did not increase with walking speed increase. Peak swing-foot velocity consistently occurred (~0.014 s) after point of minimum toe clearance on both limbs across all walking speeds, but there was no significant difference in the toe–ground clearance between the two events. Conclusion: The absence of speed related increases in minimum toe clearance on the prosthetic side suggests that speed related modulation of toe clearance for an intact limb typically occurs at the swing-limb ankle. The temporal consistency between peak foot velocity and minimum toe clearance on each limb suggests that swing-phase inter-segmental coordination is unaffected by trans-tibial amputation. Clinical relevance The lack of increase in minimum toe clearance on the prosthetic side at higher walking speeds may potentially increase risk of tripping. Findings indicate that determining the instant of peak swing-foot velocity will also consistently identify when/where minimum toe clearance occurs

    Plasmodium knowlesi Genome Sequences from Clinical Isolates Reveal Extensive Genomic Dimorphism.

    Get PDF
    Plasmodium knowlesi is a newly described zoonosis that causes malaria in the human population that can be severe and fatal. The study of P. knowlesi parasites from human clinical isolates is relatively new and, in order to obtain maximum information from patient sample collections, we explored the possibility of generating P. knowlesi genome sequences from archived clinical isolates. Our patient sample collection consisted of frozen whole blood samples that contained excessive human DNA contamination and, in that form, were not suitable for parasite genome sequencing. We developed a method to reduce the amount of human DNA in the thawed blood samples in preparation for high throughput parasite genome sequencing using Illumina HiSeq and MiSeq sequencing platforms. Seven of fifteen samples processed had sufficiently pure P. knowlesi DNA for whole genome sequencing. The reads were mapped to the P. knowlesi H strain reference genome and an average mapping of 90% was obtained. Genes with low coverage were removed leaving 4623 genes for subsequent analyses. Previously we identified a DNA sequence dimorphism on a small fragment of the P. knowlesi normocyte binding protein xa gene on chromosome 14. We used the genome data to assemble full-length Pknbpxa sequences and discovered that the dimorphism extended along the gene. An in-house algorithm was developed to detect SNP sites co-associating with the dimorphism. More than half of the P. knowlesi genome was dimorphic, involving genes on all chromosomes and suggesting that two distinct types of P. knowlesi infect the human population in Sarawak, Malaysian Borneo. We use P. knowlesi clinical samples to demonstrate that Plasmodium DNA from archived patient samples can produce high quality genome data. We show that analyses, of even small numbers of difficult clinical malaria isolates, can generate comprehensive genomic information that will improve our understanding of malaria parasite diversity and pathobiology

    Psychological interventions delivered as a single component intervention for children and adolescents with overweight or obesity aged 6 to 17 years

    Get PDF
    Objectives This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects of psychological interventions delivered as a single component intervention on the management of overweight or obesity in children and adolescents aged 6 to 17 years

    Rethinking summarization and storytelling for modern social multimedia

    Get PDF
    Traditional summarization initiatives have been focused on specific types of documents such as articles, reviews, videos, image feeds, or tweets, a practice which may result in pigeonholing the summarization task in the context of modern, content-rich multimedia collections. Consequently, much of the research to date has revolved around mostly toy problems in narrow domains and working on single-source media types. We argue that summarization and story generation systems need to re-focus the problem space in order to meet the information needs in the age of user-generated content in different formats and languages. Here we create a framework for flexible multimedia storytelling. Narratives, stories, and summaries carry a set of challenges in big data and dynamic multi-source media that give rise to new research in spatial-temporal representation, viewpoint generation, and explanatio

    The effect of word sense disambiguation accuracy on literature based discovery

    Get PDF
    Background The volume of research published in the biomedical domain has increasingly lead to researchers focussing on specific areas of interest and connections between findings being missed. Literature based discovery (LBD) attempts to address this problem by searching for previously unnoticed connections between published information (also known as “hidden knowledge”). A common approach is to identify hidden knowledge via shared linking terms. However, biomedical documents are highly ambiguous which can lead LBD systems to over generate hidden knowledge by hypothesising connections through different meanings of linking terms. Word Sense Disambiguation (WSD) aims to resolve ambiguities in text by identifying the meaning of ambiguous terms. This study explores the effect of WSD accuracy on LBD performance. Methods An existing LBD system is employed and four approaches to WSD of biomedical documents integrated with it. The accuracy of each WSD approach is determined by comparing its output against a standard benchmark. Evaluation of the LBD output is carried out using timeslicing approach, where hidden knowledge is generated from articles published prior to a certain cutoff date and a gold standard extracted from publications after the cutoff date. Results WSD accuracy varies depending on the approach used. The connection between the performance of the LBD and WSD systems are analysed to reveal a correlation between WSD accuracy and LBD performance. Conclusion This study reveals that LBD performance is sensitive to WSD accuracy. It is therefore concluded that WSD has the potential to improve the output of LBD systems by reducing the amount of spurious hidden knowledge that is generated. It is also suggested that further improvements in WSD accuracy have the potential to improve LBD accuracy

    Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    Get PDF
    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them
    corecore