21 research outputs found
Carer-proxy and child self-reported ratings of pain and quality of life
The aim of this paper is to examine agreement between carer-proxy reports and child self-report of pain and health-related quality of life. The paper will also examine whether agreement varies with the age and sex of the child
Exploring the concept of pain of Australian children with and without pain: Qualitative study
© 2019 Author(s). Objective A person's concept of pain can be defined as how they understand what pain actually is, what function it serves and what biological processes are thought to underpin it. This study aimed to explore the concept of pain in children with and without persistent pain. Design In-depth, face-to-face interviews with drawing tasks were conducted with 16 children (aged 8-12 years) in New South Wales, Australia. Thematic analysis was used to analyse and synthesise the data. Setting Children with persistent pain were identified from a pain clinic waiting list in Australia, and children without pain were identified through advertising flyers and email bulletins at a university and hospital. Participants Eight children had persistent pain and eight children were pain free. Results Four themes emerged from the data: â € my pain-related knowledge', â € pain in the world around me', â € pain in me' and â € communicating my concept of pain'. A conceptual framework of the potential interactions between the themes resulting from the analysis is proposed. The concept of pain of Australian children aged 8-12 years varied depending on their knowledge, experiences and literacy levels. For example, when undertaking a drawing task, children with persistent pain tended to draw emotional elements to describe pain, whereas children who were pain free did not. Conclusions Gaining an in-depth understanding of a child's previous pain-related experiences and knowledge is important to facilitate clear and meaningful pain science education. The use of age-appropriate language, in combination with appropriate assessment and education tasks such as drawing and discussing vignettes, allowed children to communicate their individual concept of pain
Impact of measured and simulated tundra snowpack properties on heat transfer
Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n=1050) compared to traditional snowpit observations (3 cm vertical resolution; n=115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE=5.8 ∘C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE=2.5 ∘C). The required correction factor is strongly related to snow depth () and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets
Exploring the decision-making process in model development: focus on the Arctic snowpack
The Arctic poses many challenges to Earth System and snow physics models, which are unable to simulate crucial Arctic snowpack processes, such as vapour gradients and rain-on-snow-induced ice layers. These limitations raise concerns about the current understanding of Arctic warming and its impact on biodiversity, livelihoods, permafrost and the global carbon budget. Recognizing that models are shaped by human choices, eighteen Arctic researchers were interviewed to delve into the decision-making process behind model construction. Although data availability, issues of scale, internal model consistency, and historical and numerical model legacies were cited as obstacles to developing an Arctic snowpack model, no opinion was unanimous. Divergences were not merely scientific disagreements about the Arctic snowpack, but reflected the broader research context. Inadequate and insufficient resources partly driven by short-term priorities dominating research landscapes, impeded progress. Nevertheless, modellers were found to be both adaptable to shifting strategic research priorities – an adaptability demonstrated by the fact that interdisciplinary collaborations were the key motivation for model development – and anchored in the past. This anchoring led to diverging opinions about whether existing models are “good enough” and whether investing time and effort to build a new model was a useful strategy when addressing pressing research challenges. Moving forward, we recommend that both stakeholders and modellers be involved in future snow model intercomparison projects in order to drive developments that address snow model limitations that currently impede progress in various disciplines. We also argue for more transparency about the contextual factors that shape research decisions. Otherwise, the reality of our scientific process will remain hidden, limiting the changes necessary to our research practice
Impact of measured and simulated tundra snowpack properties on heat transfer
Snowpack microstructure controls the transfer of heat to, as well as the temperature of, the underlying soils. In situ measurements of snow and soil properties from four field campaigns during two winters (March and November 2018, January and March 2019) were compared to an ensemble of CLM5.0 (Community Land Model) simulations, at Trail Valley Creek, Northwest Territories, Canada. Snow micropenetrometer profiles allowed for snowpack density and thermal conductivity to be derived at higher vertical resolution (1.25 mm) and a larger sample size (n = 1050) compared to traditional snowpit observations (3 cm vertical resolution; n = 115). Comparing measurements with simulations shows CLM overestimated snow thermal conductivity by a factor of 3, leading to a cold bias in wintertime soil temperatures (RMSE = 5.8 °C). Two different approaches were taken to reduce this bias: alternative parameterisations of snow thermal conductivity and the application of a correction factor. All the evaluated parameterisations of snow thermal conductivity improved simulations of wintertime soil temperatures, with that of Sturm et al. (1997) having the greatest impact (RMSE = 2.5 °C). The required correction factor is strongly related to snow depth (R2 = 0.77, RMSE = 0.066) and thus differs between the two snow seasons, limiting the applicability of such an approach. Improving simulated snow properties and the corresponding heat flux is important, as wintertime soil temperatures are an important control on subnivean soil respiration and hence impact Arctic winter carbon fluxes and budgets
Simulating net ecosystem exchange under seasonal snow cover at an Arctic tundra site
Estimates of winter (snow-covered non-growing season) CO2 fluxes across the Arctic region vary by a factor of 3.5, with considerable variation between measured and simulated fluxes. Measurements of snow properties, soil temperatures, and net ecosystem exchange (NEE) at Trail Valley Creek, NWT, Canada, allowed for the evaluation of simulated winter NEE in a tundra environment with the Community Land Model (CLM5.0). Default CLM5.0 parameterisations did not adequately simulate winter NEE in this tundra environment, with near-zero NEE (< 0.01 ) simulated between November and mid-May. In contrast, measured NEE was broadly positive (indicating net CO2 release) from snow-cover onset until late April. Changes to the parameterisation of snow thermal conductivity, required to correct for a cold soil temperature bias, reduced the duration for which no NEE was simulated. Parameter sensitivity analysis revealed the critical role of the minimum soil moisture threshold of decomposition (Ψmin) in regulating winter soil respiration. The default value of this parameter (Ψmin) was too high, preventing simulation of soil respiration for the vast majority of the snow-covered season. In addition, the default rate of change of soil respiration with temperature (Q10) was too low, further contributing to poor model performance during winter. As Ψmin and Q10 had opposing effects on the magnitude of simulated winter soil respiration, larger negative values of Ψmin and larger positive values of Q10 are required to simulate wintertime NEE more adequately
Recommended from our members
INTERGROWTH-21st Project international INTER-NDA standards for child development at 2 years of age: an international prospective population-based study.
OBJECTIVES: To describe the construction of the international INTERGROWTH-21st Neurodevelopment Assessment (INTER-NDA) standards for child development at 2 years by reporting the cognitive, language, motor and behaviour outcomes in optimally healthy and nourished children in the INTERGROWTH-21st Project. DESIGN: Population-based cohort study, the INTERGROWTH-21st Project. SETTING: Brazil, India, Italy, Kenya and the UK. PARTICIPANTS: 1181 children prospectively recruited from early fetal life according to the prescriptive WHO approach, and confirmed to be at low risk of adverse perinatal and postnatal outcomes. PRIMARY MEASURES: Scaled INTER-NDA domain scores for cognition, language, fine and gross motor skills and behaviour; vision outcomes measured on the Cardiff tests; attentional problems and emotional reactivity measured on the respective subscales of the preschool Child Behaviour Checklist; and the age of acquisition of the WHO gross motor milestones. RESULTS: Scaled INTER-NDA domain scores are presented as centiles, which were constructed according to the prescriptive WHO approach and excluded children born preterm and those with significant postnatal/neurological morbidity. For all domains, except negative behaviour, higher scores reflect better outcomes and the threshold for normality was defined as ≥10th centile. For the INTER-NDA's cognitive, fine motor, gross motor, language and positive behaviour domains these are ≥38.5, ≥25.7, ≥51.7, ≥17.8 and ≥51.4, respectively. The threshold for normality for the INTER-NDA's negative behaviour domain is ≤50.0, that is, ≤90th centile. At 22-30 months of age, the cohort overlapped with the WHO motor milestone centiles, showed low postnatal morbidity (<10%), and vision outcomes, attentional problems and emotional reactivity scores within the respective normative ranges. CONCLUSIONS: From this large, healthy and well-nourished, international cohort, we have constructed, using the WHO prescriptive methodology, international INTER-NDA standards for child development at 2 years of age. Standards, rather than references, are recommended for population-level screening and the identification of children at risk of adverse outcomes
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales.
Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
The IAHS Science for Solutions decade, with Hydrology Engaging Local People IN one Global world (HELPING)
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions – whether it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes
The Psychology Underlying the Teaching of Arithmetic
In making a study of the teaching of arithmetic in the elementary school the two fundamental considerations seam to be: (1) What are the ends to be accomplished in arithmetic? and, (2) What are the best methods of accomplishing these ends? The first of these questions is essentially one of sociology and therefore will not be discussed here. The Psychology of Arithmetic , as it is commonly called, deals with the second question. Psychology has for its field of investigation the properties and workings of the human mind. In considering methods to be used in teaching arithmetic we must keep in mind; (a) the native equipment of the child, (b) the properties and capabilities of the child\u27s mind that will assist him in learning arithmetic, (c) how these properties and capabilities can be used to the best advantage, and, (d) how his achievement can be measured