3,242 research outputs found

    Effect of different marinade treatments on survival and morphology of pathogens in beef jerky

    Get PDF
    The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file.Title from PDF of title page (University of Missouri--Columbia, viewed on December 29, 2009).Thesis advisor: Dr. Andrew D. Clarke.Includes bibliographical references.M.S. University of Missouri--Columbia 2009.Dissertations, Academic -- University of Missouri--Columbia -- Food science.In the early fall of 2003, the Food Safety and Inspection Service (FSIS 2004) found that producers of meat and poultry jerky were not adequately processing the meat to achieve the lethality required to kill or reduce the number of microorganisms. In this project, ground beef jerky was prepared with four different treatments i.e. traditional marinade (TM), modified marinade (MM), acetic acid-traditional marinade (AATM), Tween 20-traditional marinade (TWTM), along with a control. The jerky strips were individually inoculated with four different bacterial strains i.e. E. coli O157:H7, S. Typhimurium, L. monocytogenes and S. aureus and stored at ambient temperature under vacuum packaging for analysis at 7 day intervals up to 28 days. The parameters studied were pH, water activity and enumeration of microbial count. Every marinade used in this study was effective in reducing pathogen survival on inoculated beef jerky when compared to the control, which was evident by low microbial count in treated jerky samples compared to control. In order to reduce the survival of pathogens that are introduced to the surface of beef jerky post-processing, a combination of marinade reformulation, effective thermal processing, and avoidance of cross - contamination is considered ideal for ensuring the safety of beef jerky for consumers

    Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury

    Get PDF
    Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans

    Comprehensive mutations analyses of FTO (fat mass and obesity-associated gene) and their effects on FTO’s substrate binding implicated in obesity

    Get PDF
    An excessive amount of fat deposition in the body leads to obesity which is a complex disease and poses a generic threat to human health. It increases the risk of various other diseases like diabetes, cardiovascular disease, and multiple types of cancer. Genomic studies have shown that the expression of the fat mass obesity (FTO) gene was highly altered and identified as one of the key biomarkers for obesity. This study has been undertaken to investigate the mutational profile of the FTO gene and elucidates its effect on the protein structure and function. Harmful effects of various missense mutations were predicted using different independent tools and it was observed that all mutations were highly pathogenic. Molecular dynamics (MD) simulations were performed to study the structure and function of FTO protein upon different mutations and it was found that mutations decreased the structure stability and affected protein conformation. Furthermore, a protein residue network analysis suggested that the mutations affected the overall residues bonding and topology. Finally, molecular docking coupled with MD simulation suggested that mutations affected FTO substrate binding by changing the protein-ligand affinity. Hence, the results of this finding would help in an in-depth understanding of the molecular biology of the FTO gene and its variants and lead to the development of effective therapeutics against associated diseases and disorders

    Effects of Deoxycholylglycine, a Conjugated Secondary Bile Acid, on Myogenic Tone and Agonist-Induced Contraction in Rat Resistance Arteries

    Get PDF
    Bile acids (BAs) regulate cardiovascular function via diverse mechanisms. Although in both health and disease serum glycine-conjugated BAs are more abundant than taurine-conjugated BAs, their effects on myogenic tone (MT), a key determinant of systemic vascular resistance (SVR), have not been examined.Fourth-order mesenteric arteries (170-250 µm) isolated from Sprague-Dawley rats were pressurized at 70 mmHg and allowed to develop spontaneous constriction, i.e., MT. Deoxycholylglycine (DCG; 0.1-100 µM), a glycine-conjugated major secondary BA, induced reversible, concentration-dependent reduction of MT that was similar in endothelium-intact and -denuded arteries. DCG reduced the myogenic response to stepwise increase in pressure (20 to 100 mmHg). Neither atropine nor the combination of L-NAME (a NOS inhibitor) plus indomethacin altered DCG-mediated reduction of MT. K(+) channel blockade with glibenclamide (K(ATP)), 4-aminopyradine (K(V)), BaCl(2) (K(IR)) or tetraethylammonium (TEA, K(Ca)) were also ineffective. In Fluo-2-loaded arteries, DCG markedly reduced vascular smooth muscle cell (VSM) Ca(2+) fluorescence (∼50%). In arteries incubated with DCG, physiological salt solution (PSS) with high Ca(2+) (4 mM) restored myogenic response. DCG reduced vascular tone and VSM cytoplasmic Ca(2+) responses (∼50%) of phenylephrine (PE)- and Ang II-treated arteries, but did not affect KCl-induced vasoconstriction.In rat mesenteric resistance arteries DCG reduces pressure- and agonist-induced vasoconstriction and VSM cytoplasmic Ca(2+) responses, independent of muscarinic receptor, NO or K(+) channel activation. We conclude that BAs alter vasomotor responses, an effect favoring reduced SVR. These findings are likely pertinent to vascular dysfunction in cirrhosis and other conditions associated with elevated serum BAs

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore