3,034 research outputs found
Distributed PI-Control with Applications to Power Systems Frequency Control
This paper considers a distributed PI-controller for networked dynamical
systems. Sufficient conditions for when the controller is able to stabilize a
general linear system and eliminate static control errors are presented. The
proposed controller is applied to frequency control of power transmission
systems. Sufficient stability criteria are derived, and it is shown that the
controller parameters can always be chosen so that the frequencies in the
closed loop converge to nominal operational frequency. We show that the load
sharing property of the generators is maintained, i.e., the input power of the
generators is proportional to a controller parameter. The controller is
evaluated by simulation on the IEEE 30 bus test network, where its
effectiveness is demonstrated
Control of MTDC Transmission Systems under Local Information
High-voltage direct current (HVDC) is a commonly used technology for
long-distance electric power transmission, mainly due to its low resistive
losses. In this paper a distributed controller for multi-terminal high-voltage
direct current (MTDC) transmission systems is considered. Sufficient conditions
for when the proposed controller renders the closed-loop system asymptotically
stable are provided. Provided that the closed loop system is asymptotically
stable, it is shown that in steady-state a weighted average of the deviations
from the nominal voltages is zero. Furthermore, a quadratic cost of the current
injections is minimized asymptotically
Photon generation in an electromagnetic cavity with a time-dependent boundary
We report the observation of photon generation in a microwave cavity with a
time-dependent boundary condition. Our system is a microfabricated quarter-wave
coplanar waveguide cavity. The electrical length of the cavity is varied using
the tunable inductance of a superconducting quantum interference device. It is
measured in the quantum regime, where the temperature is significantly less
than the resonance frequency (~ 5 GHz). When the length is modulated at
approximately twice the static resonance frequency, spontaneous oscillations of
the cavity field are observed. Time-resolved measurements of the dynamical
state of the cavity show multiple stable states. The behavior is well described
by theory. Connections to the dynamical Casimir effect are discussed.Comment: 5 pages, 3 Figure
Distributed Voltage and Current Control of Multi-Terminal High-Voltage Direct Current Transmission Systems
High-voltage direct current (HVDC) is a commonly used technology for
long-distance power transmission, due to its low resistive losses and low
costs. In this paper, a novel distributed controller for multi-terminal HVDC
(MTDC) systems is proposed. Under certain conditions on the controller gains,
it is shown to stabilize the MTDC system. The controller is shown to always
keep the voltages close to the nominal voltage, while assuring that the
injected power is shared fairly among the converters. The theoretical results
are validated by simulations, where the affect of communication time-delays is
also studied
Asymptotic and finite-time almost global attitude tracking: representations free approach
In this paper, the attitude tracking problem is considered using the rotation
matrices. Due to the inherent topological restriction, it is impossible to
achieve global attractivity with any continuous attitude control system on
. Hence in this work, we propose some control protocols achieve almost
global tracking asymptotically and in finite time, respectively. In these
protocols, no world frame is needed and only relative state informations are
requested. For finite-time tracking case, Filippov solutions and non-smooth
analysis techniques are adopted to handle the discontinuities. Simulation
examples are provided to verify the performances of the control protocols
designed in this paper.Comment: arXiv admin note: text overlap with arXiv:1705.0282
Photon creation from vacuum and interactions engineering in nonstationary circuit QED
We study theoretically the nonstationary circuit QED system in which the
artificial atom transition frequency, or the atom-cavity coupling, have a small
periodic time modulation, prescribed externally. The system formed by the atom
coupled to a single cavity mode is described by the Rabi Hamiltonian. We show
that, in the dispersive regime, when the modulation periodicity is tuned to the
`resonances', the system dynamics presents the dynamical Casimir effect,
resonant Jaynes-Cummings or resonant Anti-Jaynes-Cummings behaviors, and it can
be described by the corresponding effective Hamiltonians. In the resonant
atom-cavity regime and under the resonant modulation, the dynamics is similar
to the one occurring for a stationary two-level atom in a vibrating cavity, and
an entangled state with two photons can be created from vacuum. Moreover, we
consider the situation in which the atom-cavity coupling, the atomic frequency,
or both have a small nonperiodic time modulation, and show that photons can be
created from vacuum in the dispersive regime. Therefore, an analog of the
dynamical Casimir effect can be simulated in circuit QED, and several photons,
as well as entangled states, can be generated from vacuum due to the
anti-rotating term in the Rabi Hamiltonian.Comment: 14 pages, 6 figures. Talk presented at the International Workshop "60
Years of Casimir Effect", 23 - 27 June, 2008, Brasili
Fast tuning of superconducting microwave cavities
Photons are fundamental excitations of the electromagnetic field and can be
captured in cavities. For a given cavity with a certain size, the fundamental
mode has a fixed frequency {\it f} which gives the photons a specific "color".
The cavity also has a typical lifetime , which results in a finite
linewidth {\it f}. If the size of the cavity is changed fast compared
to , and so that the frequency change {\it f} {\it
f}, then it is possible to change the "color" of the captured photons. Here we
demonstrate superconducting microwave cavities, with tunable effective lengths.
The tuning is obtained by varying a Josephson inductance at one end of the
cavity. We show data on four different samples and demonstrate tuning by
several hundred linewidths in a time . Working in the few
photon limit, we show that photons stored in the cavity at one frequency will
leak out from the cavity with the new frequency after the detuning. The
characteristics of the measured devices make them suitable for different
applications such as dynamic coupling of qubits and parametric amplification.Comment: 2nd International Workshop on Solid-State Quantum Computing, June
2008, Taipei, Taiwa
- …