32 research outputs found
Optimized minigaps for negative differential resistance creation in strongly delta-doped (1D) superlattices
The "atomic saw method" uses the passage of dislocations in two-dimensional
(2D) quantum-well superlattices to create periodic slipping layers and
one-dimensional (1D) quantum wire superlattices. The effects of this space
structuring of the samples on the allowed energies are analysed in the case of
GaAs d-doped superlattices. If they are sufficiently large, the various
minigaps appearing in the 1D band structure could be responsible for the
presence of negative differential resistance (NDR) with high critical current
in these systems. The purpose is to determine the evolution of the minigaps in
terms of the sample parameters and to obtain the means to determine both the 2D
and 1D structural characteristics where NDR could appear.Comment: see erratum 10.1006/spmi.1998.070
Study and characterization by magnetophonon resonance of the energy structuring in GaAs/AlAs quantum-wire superlattices
We present the characterization of the band structure of GaAs/AlAs
quantum-wire 1D superlattices performed by magnetophonon resonance with pulsed
magnetic fields up to 35 T. The samples, generated by the "atomic saw method"
from original quantum-well 2D superlattices, underwent substantial
modifications of their energy bands built up on the X-states of the bulk. We
have calculated the band structure by a finite element method and we have
studied the various miniband structures built up of the masses m_t and m_l of
GaAs and AlAs at the point X. From an experimental point of view, the main
result is that in the 2D case we observe only resonances when the magnetic
field B is applied along the growth axis whereas in the 1D case we obtain
resonances in all magnetic field configurations. The analysis of the maxima (or
minima for B // E) in the resistivity rho_xy as a function of B allows us to
account, qualitatively and semi-quantitatively, for the band structure
theoretically expected
Confined photon modes with triangular symmetry in hexagonal microcavities in 2D photonic Crystals
We present theoretical and experimental studies of the size and thickness
dependencies of the optical emission spectra from microcavities with hexagonal
shape in films of two-dimensional photonic crystal. A semiclassical plane-wave
model, which takes into account the electrodynamic properties of quasi-2D
planar photonic microcavity, is developed to predict the eigenfrequencies of
the confined photon modes as a function of both the hexagon-cavity size and the
film thickness. Modes with two different symmetries, triangular and hexagonal,
are critically analyzed. It is shown that the model of confined photon modes
with triangular symmetry gives a better agreement between the predicted
eigenmodes and the observed resonances.Comment: 14 pages, 6 figure
Optical Control Of The Two-dimensional Electron-gas Density In Modulation-doped Quantum Wells Studied By Magnetophotoluminescence
We show by magnetoluminescence and photoluminescence excitation spectroscopy that the density of the two-dimensional electron gas in a GaAs/AlxGa1-xAs asymmetric modulation-doped multiple quantum-well structure is changed when the sample is excited with photons having an energy lower than the alloy band gap. © 1993 The American Physical Society.4831967196
Scaling laws in bacterial genomes: A side-effect of selection of mutational robustness?
In the past few years, numerous research projects have focused on identifying and understanding scaling properties in the gene content of prokaryote genomes and the intricacy of their regulation networks. Yet, and despite the increasing amount of data available, the origins of these scalings remain an open question. The RAevol model, a digital genetics model, provides us with an insight into the mechanisms involved in an evolutionary process. The results we present here show that (i) our model reproduces qualitatively these scaling laws and that (ii) these laws are not due to differences in lifestyles but to differences in the spontaneous rates of mutations and rearrangements. We argue that this is due to an indirect selective pressure for robustness that constrains the genome size
Magnetization of a two-dimensional electron gas with a second filled subband
We have measured the magnetization of a dual-subband two-dimensional electron
gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional
electron gases with a single subband, we observe non-1/B-periodic, triangularly
shaped oscillations of the magnetization with an amplitude significantly less
than per electron. All three effects are explained by a
field dependent self-consistent model, demonstrating the shape of the
magnetization is dominated by oscillations in the confining potential.
Additionally, at 1 K, we observe small oscillations at magnetic fields where
Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure
Average Entropy of a Subsystem from its Average Tsallis Entropy
In the nonextensive Tsallis scenario, Page's conjecture for the average
entropy of a subsystem[Phys. Rev. Lett. {\bf 71}, 1291(1993)] as well as its
demonstration are generalized, i.e., when a pure quantum system, whose Hilbert
space dimension is , is considered, the average Tsallis entropy of an
-dimensional subsystem is obtained. This demonstration is expected to be
useful to study systems where the usual entropy does not give satisfactory
results.Comment: Revtex, 6 pages, 2 figures. To appear in Phys. Rev.