61,353 research outputs found

    Spontaneous direct bonding of thick silicon nitride

    Get PDF
    Wafers with LPCVD silicon-rich nitride layers have been successfully direct bonded to silicon-rich nitride and boron-doped silicon surfaces. A chemical - mechanical polishing treatment was necessary to reduce the surface roughness of the nitride before bonding. The measured surface energies of the room-temperature bond were comparable to values found for Si - Si hydrophilic bonding. A mechanism similar to this bonding is suggested for silicon nitride bonding

    Scaling forces to asteroid surfaces: The role of cohesion

    Full text link
    The scaling of physical forces to the extremely low ambient gravitational acceleration regimes found on the surfaces of small asteroids is performed. Resulting from this, it is found that van der Waals cohesive forces between regolith grains on asteroid surfaces should be a dominant force and compete with particle weights and be greater, in general, than electrostatic and solar radiation pressure forces. Based on this scaling, we interpret previous experiments performed on cohesive powders in the terrestrial environment as being relevant for the understanding of processes on asteroid surfaces. The implications of these terrestrial experiments for interpreting observations of asteroid surfaces and macro-porosity are considered, and yield interpretations that differ from previously assumed processes for these environments. Based on this understanding, we propose a new model for the end state of small, rapidly rotating asteroids which allows them to be comprised of relatively fine regolith grains held together by van der Waals cohesive forces.Comment: 54 pages, 7 figure

    1.5V fully programmable CMOS Membership Function Generator Circuit with proportional DC-voltage control

    Get PDF
    A Membership Function Generator Circuit (MFGC) with bias supply of 1.5 Volts and independent DC-voltage programmable functionalities is presented. The realization is based on a programmable differential current mirror and three compact voltage-to-current converters, allowing continuous and quasi-linear adjustment of the center position, height, width and slopes of the triangular/trapezoidal output waveforms. HSPICE simulation results of the proposed circuit using the parameters of a double-poly, three metal layers, 0.5 μm CMOS technology validate the functionality of the proposed architecture, which exhibits a maximum deviation of the linearity in the programmability of 7 %

    Thermodynamics of the BPS Skyrme model

    Full text link
    One problem in the application of the Skyrme model to nuclear physics is that it predicts too large a value for the compression modulus of nuclear matter. Here we investigate the thermodynamics of the BPS Skyrme model at zero temperature and calculate its equation of state. Among other results, we find that classically (i.e. without taking into account quantum corrections) the compressibility of BPS skyrmions is, in fact, infinite, corresponding to a zero compression modulus. This suggests that the inclusion of the BPS submodel into the Skyrme model lagrangian may significantly reduce this too large value, providing further evidence for the claim that the BPS Skyrme model may play an important role in the description of nuclei and nuclear matter.Comment: Latex, 26 pages, 1 figure; v2: some typos corrected, version accepted for publication in Phys. Rev.
    corecore