276 research outputs found
Successful Treatment of an Iatrogenic Giant Femoral Artery Pseudoaneurysm With Percutaneous Thrombin Injection
A femoral artery pseudoaneurysm (FAP) is one of the most troublesome complications following invasive procedures related to the femoral arterial access. Post-procedure FAP rarely occurs; however, its occurrence tends to increase with the more frequently antiplatelet agents, anticoagulants, and larger-sized catheter used for interventional procedures. Traditionally, surgical repair has been considered as the standard treatment modality for FAP; however, less invasive methods currently exist such as blind manual or ultrasound-guided compression repair (UGCR) as well as percutaneous thrombin injection, both of which have replaced the need for surgery. We report a case of a giant pseudoaneurysm in a femoral artery, which had developed as a complication of stenting in a patient with carotid artery stenosis and ischemic heart disease, and was subsequently successfully treated using percutaneous thrombin injection
The Rescue on Reperfusion Damage in Cerebral Infarction by Nelonemdaz (RODIN) Trial: Protocol for a Double-Blinded Clinical Trial of Nelonemdaz in Patients with Hyperacute Ischemic Stroke and Endovascular Thrombectomy
Background and Purpose Nelonemdaz (Neu2000) has both selective antagonism against 2B subunit of N-methyl-D-aspartate receptor and antioxidant activity. This drug provides sufficient evidence of neuroprotection in acute cerebral ischemia/reperfusion models. This phase III trial aims to determine this effect in patients. Design The Rescue on Reperfusion Damage in Cerebral Infarction by Nelonemdaz is a multicenter, double-blinded clinical trial. A total of 496 patients will be randomly assigned into the nelonemdaz (a total of 5,250 mg divided by 10 times for 5 days) and placebo groups. Patients will be included if they have an acute ischemic stroke (National Institutes of Health Stroke Scale score ≥8) caused by intracranial large vessel occlusion in the anterior circulation (Alberta Stroke Program Early CT Score ≥4), and if they are expected to undergo endovascular thrombectomy within 12 hours after stroke onset. Endpoints The primary endpoint is a favorable shift in the modified Rankin Scale (mRS) score at 90 days after the first dose of drug. The data will be analyzed by the Cochran–Mantel–Haenszel shift test. The secondary endpoints include functional independence (mRS 0–2) at 35 and 90 days, the favorable shift of mRS at 35 days, the proportion of mRS 0 at 35 and 90 days, and the occurrence rates of symptomatic intracranial hemorrhage within 7 days. Conclusion This trial will clarify the efficacy and safety of nelonemdaz in patients with acute ischemic stroke and endovascular thrombectomy. This study has been registered at ClinicalTrials. gov (NCT05041010)
Actein Inhibits the Proliferation and Adhesion of Human Breast Cancer Cells and Suppresses Migration in vivo
Background and purpose: Metastasis is an important cause of death in breast cancer patients. Anti-metastatic agents are urgently needed since standard chemotherapeutics cannot diminish the metastatic rate. Actein, a cycloartane triterpenoid, has been demonstrated to exhibit anti-angiogenic and anti-cancer activities. Its anti-metastatic activity and underlying mechanisms were evaluated in the present study.Methods: The effects of actein on the proliferation, cell cycle phase distribution, migration, motility and adhesion were evaluated using two human breast cancer cell lines, MDA-MB-231 (estrogen receptor-negative) and MCF-7 cells (estrogen receptor-positive) in vitro. Western blots and real-time PCR were employed to examine the protein and mRNA expression of relevant signaling pathways. A human metastatic breast cancer cell xenograft model was established in transparent zebrafish embryos to examine the anti-migration effect of actein in vivo.Results:In vitro results showed that actein treatment significantly decreased cell proliferation, migration and motility. Furthermore, actein significantly caused G1 phase cell cycle arrest and suppressed the protein expression of matrix metalloproteinases of MDA-MB-231 cells. In addition, actein inhibited breast cancer cell adhesion to collagen, also reduced the expression of integrins. Actein treatment down-regulated the protein expression of epidermal growth factor receptor (EGFR), AKT and NF-κB signaling proteins. In vivo results demonstrated that actein (60 μM) significantly decreased the number of zebrafish embryos with migrated cells by 74% and reduced the number of migrated cells in embryos.Conclusion: Actein exhibited anti-proliferative, anti-adhesion and anti-migration activities, with the underlying mechanisms involved the EGFR/AKT and NF-kappaB signalings. These findings shed light for the development of actein as novel anti-migration natural compound for advanced breast cancer
Recommended from our members
Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors
With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage1. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO2 (ref. 2), which remains the material of choice to date. Here we report HfO2-ZrO2 superlattice heterostructures as a gate stack, stabilized with mixed ferroelectric-antiferroelectric order, directly integrated onto Si transistors, and scaled down to approximately 20 ångströms, the same gate oxide thickness required for high-performance transistors. The overall equivalent oxide thickness in metal-oxide-semiconductor capacitors is equivalent to an effective SiO2 thickness of approximately 6.5 ångströms. Such a low effective oxide thickness and the resulting large capacitance cannot be achieved in conventional HfO2-based high-dielectric-constant gate stacks without scavenging the interfacial SiO2, which has adverse effects on the electron transport and gate leakage current3. Accordingly, our gate stacks, which do not require such scavenging, provide substantially lower leakage current and no mobility degradation. This work demonstrates that ultrathin ferroic HfO2-ZrO2 multilayers, stabilized with competing ferroelectric-antiferroelectric order in the two-nanometre-thickness regime, provide a path towards advanced gate oxide stacks in electronic devices beyond conventional HfO2-based high-dielectric-constant materials
Exploring aryl hydrocarbon receptor expression and distribution in the tumor microenvironment, with a focus on immune cells, in various solid cancer types
IntroductionAryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers.MethodsHere, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression.ResultsOur findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC).DiscussionThese findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies
A Type 2C Protein Phosphatase FgPtc3 Is Involved in Cell Wall Integrity, Lipid Metabolism, and Virulence in Fusarium graminearum
Type 2C protein phosphatases (PP2Cs) play important roles in regulating many biological processes in eukaryotes. Currently, little is known about functions of PP2Cs in filamentous fungi. The causal agent of wheat head blight, Fusarium graminearum, contains seven putative PP2C genes, FgPTC1, -3, -5, -5R, -6, -7 and -7R. In order to investigate roles of these PP2Cs, we constructed deletion mutants for all seven PP2C genes in this study. The FgPTC3 deletion mutant (ΔFgPtc3-8) exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents on potato dextrose agar plates. Pathogencity assays showed that ΔFgPtc3-8 is unable to infect flowering wheat head. All of the defects were restored when ΔFgPtc3-8 was complemented with the wild-type FgPTC3 gene. Additionally, the FgPTC3 partially rescued growth defect of a yeast PTC1 deletion mutant under various stress conditions. Ultrastructural and histochemical analyses showed that conidia of ΔFgPtc3-8 contained an unusually high number of large lipid droplets. Furthermore, the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Quantitative real-time PCR assays showed that basal expression of FgOS2, FgSLT2 and FgMKK1 in the mutant was significantly higher than that in the wild-type strain. Serial analysis of gene expression in ΔFgPtc3-8 revealed that FgPTC3 is associated with various metabolic pathways. In contrast to the FgPTC3 mutant, the deletion mutants of FgPTC1, FgPTC5, FgPTC5R, FgPTC6, FgPTC7 or FgPTC7R did not show aberrant phenotypic features when grown on PDA medium or inoculated on wheat head. These results indicate FgPtc3 is the key PP2C that plays a critical role in a variety of cellular and biological functions, including cell wall integrity, lipid and secondary metabolisms, and virulence in F. graminearum
Recommended from our members
Burden of Total and Cause-Specific Mortality Related to Tobacco Smoking among Adults Aged ≥45 Years in Asia: A Pooled Analysis of 21 Cohorts
Background:Tobacco smoking is a major risk factor for many diseases. We sought to quantify the burden of tobacco-smoking-related deaths in Asia, in parts of which men's smoking prevalence is among the world's highest.Methods and Findings:We performed pooled analyses of data from 1,049,929 participants in 21 cohorts in Asia to quantify the risks of total and cause-specific mortality associated with tobacco smoking using adjusted hazard ratios and their 95% confidence intervals. We then estimated smoking-related deaths among adults aged ≥45 y in 2004 in Bangladesh, India, mainland China, Japan, Republic of Korea, Singapore, and Taiwan-accounting for ∼71% of Asia's total population. An approximately 1.44-fold (95% CI = 1.37-1.51) and 1.48-fold (1.38-1.58) elevated risk of death from any cause was found in male and female ever-smokers, respectively. In 2004, active tobacco smoking accounted for approximately 15.8% (95% CI = 14.3%-17.2%) and 3.3% (2.6%-4.0%) of deaths, respectively, in men and women aged ≥45 y in the seven countries/regions combined, with a total number of estimated deaths of ∼1,575,500 (95% CI = 1,398,000-1,744,700). Among men, approximately 11.4%, 30.5%, and 19.8% of deaths due to cardiovascular diseases, cancer, and respiratory diseases, respectively, were attributable to tobacco smoking. Corresponding proportions for East Asian women were 3.7%, 4.6%, and 1.7%, respectively. The strongest association with tobacco smoking was found for lung cancer: A 3- to 4-fold elevated risk, accounting for 60.5% and 16.7% of lung cancer deaths, respectively, in Asian men and East Asian women aged ≥45 y.Conclusions:Tobacco smoking is associated with a substantially elevated risk of mortality, accounting for approximately 2 million deaths in adults aged ≥45 y throughout Asia in 2004. It is likely that smoking-related deaths in Asia will continue to rise over the next few decades if no effective smoking control programs are implemented.Please see later in the article for the Editors' Summary. © 2014 Zheng et al
Oxidative Stress in Cancer
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism
- …