2 research outputs found

    Timing of host feeding drives rhythms in parasite replication

    Get PDF
    Circadian rhythms enable organisms to synchronise the processes underpinning survival and reproduction to anticipate daily changes in the external environment. Recent work shows that daily (circadian) rhythms also enable parasites to maximise fitness in the context of ecological interactions with their hosts. Because parasite rhythms matter for their fitness, understanding how they are regulated could lead to innovative ways to reduce the severity and spread of diseases. Here, we examine how host circadian rhythms influence rhythms in the asexual replication of malaria parasites. Asexual replication is responsible for the severity of malaria and fuels transmission of the disease, yet, how parasite rhythms are driven remains a mystery. We perturbed feeding rhythms of hosts by 12 hours (i.e. diurnal feeding in nocturnal mice) to desynchronise the hosts' peripheral oscillators from the central, light-entrained oscillator in the brain and their rhythmic outputs. We demonstrate that the rhythms of rodent malaria parasites in day-fed hosts become inverted relative to the rhythms of parasites in night-fed hosts. Our results reveal that the hosts' peripheral rhythms (associated with the timing of feeding and metabolism), but not rhythms driven by the central, light-entrained circadian oscillator in the brain, determine the timing (phase) of parasite rhythms. Further investigation reveals that parasite rhythms correlate closely with blood glucose rhythms. In addition, we show that parasite rhythms resynchronise to the altered host feeding rhythms when food availability is shifted, which is not mediated through rhythms in the host immune system. Our observations suggest that parasites actively control their developmental rhythms. Finally, counter to expectation, the severity of disease symptoms expressed by hosts was not affected by desynchronisation of their central and peripheral rhythms. Our study at the intersection of disease ecology and chronobiology opens up a new arena for studying host-parasite-vector coevolution and has broad implications for applied bioscience

    Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    No full text
    This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140) with half of the samples finished and polished with Super-SnapÂź disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard). The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline) of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level). For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods
    corecore