8,463 research outputs found
Population Dynamics Model and Analysis for Bacteria Transformation and Conjugation
We present a two-species population model in a well-mixed environment where
the dynamics involves, in addition to birth and death, changes due to
environmental factors and inter-species interactions. The novel dynamical
components are motivated by two common mechanisms for developing antibiotic
resistance in bacteria: plasmid {\it transformation}, where external genetic
material in the form of a plasmid is transferred inside a host cell; and {\it
conjugation} by which one cell transfers genetic material to another by direct
cell-to-cell contact. Through analytical and numerical methods, we identify the
effects of transformation and conjugation individually. With transformation
only, the two-species system will evolve towards one species' extinction, or a
stable co-existence in the long-time limit. With conjugation only, we discover
interesting oscillations for the system. Further, we quantify the combined
effects of transformation and conjugation, and chart the regimes of stable
co-existence, a result with ecological implications.Comment: 11 pages, 10 figures, J. Phys. Commun (2020
A role for TSPO in mitochondrial Ca2+ homeostasis and redox stress signaling
The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS). Here we describe that TSPO deregulates mitochondrial Ca2+ signaling leading to a parallel increase in the cytosolic Ca2+ pools that activate the Ca2+-dependent NADPH oxidase (NOX) thereby increasing ROS. The inhibition of mitochondrial Ca2+ uptake by TSPO is a consequence of the phosphorylation of the voltage-dependent anion channel (VDAC1) by the protein kinase A (PKA), which is recruited to the mitochondria, in complex with the Acyl-CoA binding domain containing 3 (ACBD3). Notably, the neurotransmitter glutamate, which contributes neuronal toxicity in age-dependent conditions, triggers this TSPO-dependent mechanism of cell signaling leading to cellular demise. TSPO is therefore proposed as a novel OMM-based pathway to control intracellular Ca2+ dynamics and redox transients in neuronal cytotoxicity
The GREAT triggerless total data readout method
Recoil decay tagging (RDT) is a very powerful method for the spectroscopy of exotic nuclei. RDT is a delayed coincidence technique between detectors usually at the target position and at the focal plane of a spectrometer. Such measurements are often limited by dead time. This paper describes a novel triggerless data acquisition method, which is being developed for the Gamma Recoil Electron Alpha Tagging (GREAT) spectrometer, that overcomes this limitation by virtually eliminating dead time. Our solution is a total data readout (TDR) method where all channels run independently and are associated in software to reconstruct events. The TDR method allows all the data from both target position and focal plane to be collected with practically no dead-time losses. Each data word is associated with a timestamp generated from a global 100-MHz clock. Events are then reconstructed in real time in the event builder using temporal and spatial associations defined by the physics of the experimen
Mapping and understanding the decision-making process for providing nutrition and hydration to people living with dementia: a systematic review
BACKGROUND: This systematic review aimed to explore the process of decision-making for nutrition and hydration for people living with dementia from the perspectives and experiences of all involved. METHODS: We searched CINAHL, the Cochrane Library, EMBASE, MEDLINE and PsycINFO databases. Search terms were related to dementia, decision-making, nutrition and hydration. Qualitative, quantitative and case studies that focused on decision-making about nutrition and hydration for people living with dementia were included. The CASP and Murad tools were used to appraise the quality of included studies. Data extraction was guided by the Interprofessional Shared Decision Making (IP-SDM) model. We conducted a narrative synthesis using thematic analysis. PROSPERO registration number CRD42019131497. RESULTS: Forty-five studies were included (20 qualitative, 15 quantitative and 10 case studies), comprising data from 17 countries and 6020 patients, family caregivers and practitioners. The studies covered a range of decisions from managing oral feeding to the use of tube feeding. We found that decisions about nutrition and hydration for people living with dementia were generally too complex to be mapped onto the precise linear steps of the existing decision-making model. Decision-making processes around feeding for people living with dementia were largely influenced by medical evidence, personal values, cultures and organizational routine. Although the process involved multiple people, family caregivers and non-physician practitioners were often excluded in making a final decision. Upon disagreement, nutrition interventions were sometimes delivered with conflicting feelings concealed by family caregivers or practitioners. Most conflicts and negative feelings were resolved by good relationship, honest communication, multidisciplinary team meetings and renegotiation. CONCLUSIONS: The decision-making process regarding nutrition and hydration for people living with dementia does not follow a linear process. It needs an informed, value-sensitive, and collaborative process. However, it often characterized by unclear procedures and with a lack of support. Decisional support is needed and should be approached in a shared and stepwise manner
The ROTSE-III Robotic Telescope System
The observation of a prompt optical flash from GRB990123 convincingly
demonstrated the value of autonomous robotic telescope systems. Pursuing a
program of rapid follow-up observations of gamma-ray bursts, the Robotic
Optical Transient Search Experiment (ROTSE) has developed a next-generation
instrument, ROTSE-III, that will continue the search for fast optical
transients. The entire system was designed as an economical robotic facility to
be installed at remote sites throughout the world. There are seven major system
components: optics, optical tube assembly, CCD camera, telescope mount,
enclosure, environmental sensing & protection and data acquisition. Each is
described in turn in the hope that the techniques developed here will be useful
in similar contexts elsewhere.Comment: 19 pages, including 4 figures. To be published in PASP in January,
2003. PASP Number IP02-11
- …