136 research outputs found

    Dynamic Hedging Strategies Based on Changing the Pricing Parameters for Compound Ratchets

    Get PDF
    Equity-Indexed Annuity products (EIAs) are becoming increasingly popular as they are tax-deferred accumulation vehicles that offer participation in the equity market growth while keeping the initial capital protected. This thesis focuses in particular on a special type of EIAs; the Compound Ratchet (CR). Sellers of this product, such as insurance companies and banks, retain the right to change one of the pricing parameters on each contract anniversary date, while promising not to cross a certain predetermined threshold. Changing these parameters can sometimes have an impact on the value of the EIA, which makes them interesting to study, especially when the issuer's changing policy is not clear. In order to reproduce the pattern of these changing parameters, a new approach of dynamically hedging the CR EIA and simultaneously protecting the issuer from hedging risk is proposed and tested. Assuming the Black-Scholes Financial framework and in the absence of mortality risk, closed-form solutions for the price and value of the CR EIA at any time throughout the contract term are obtained and then used to find the Greeks, which are in turn used build the hedging strategies. In reality, trading can only be done in discrete time, which produces hedging errors. A detailed numerical example shows that the Gamma-hedging strategy outperforms the Delta-hedging strategy by reducing the magnitude of these errors. However hedging risk still exists, therefore, the new approach is applied to transfer the errors from the issuer to the buyer by dynamically changing the pricing parameters. Additionally in the numerical example, the distribution of these parameters is extracted and analyzed, as well as the resulting reduction in the hedging errors, which represent the reduced cost for the issuer

    Potential Application of Tregitopes as Immunomodulating Agents in Multiple Sclerosis

    Get PDF
    The induction of immunologic tolerance is an important clinical goal in autoimmunity. CD4+ regulatory T (Treg) cells, defined by the expression of the transcription factor forkhead box P3 (FoxP3), play a central role in the control of autoimmune responses. Quantitative and qualitative defects of Tregs have been postulated to contribute to failed immune regulation in multiple sclerosis (MS) and other autoimmune diseases. This paper highlights the potential uses of T regulatory cell epitopes (Tregitopes), natural Treg epitopes found to be contained in human immunoglobulins, as immunomodulating agents in MS. Tregitopes expand Treg cells and induce “adaptive Tregs” resulting in immunosuppression and, therefore, are being considered as a potential therapy for autoimmune diseases. We will compare Tregitopes versus intravenous immunoglobulin (IVIg) in the treatment of EAE with emphasis on the potential applications of Tregitope for the treatment of MS

    Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation

    Get PDF
    A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1–/– NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS

    Critical Role of the Programmed Death-1 (PD-1) Pathway in Regulation of Experimental Autoimmune Encephalomyelitis

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is mediated by autoantigen-specific T cells dependent on critical costimulatory signals for their full activation and regulation. We report that the programmed death-1 (PD-1) costimulatory pathway plays a critical role in regulating peripheral tolerance in murine EAE and appears to be a major contributor to the resistance of disease induction in CD28-deficient mice. After immunization with myelin oligodendrocyte glycoprotein (MOG) there was a progressive increase in expression of PD-1 and its ligand PD-L1 but not PD-L2 within the central nervous system (CNS) of mice with EAE, peaking after 3 wk. In both wild-type (WT) and CD28-deficient mice, PD-1 blockade resulted in accelerated and more severe disease with increased CNS lymphocyte infiltration. Worsening of disease after PD-1 blockade was associated with a heightened autoimmune response to MOG, manifested by increased frequency of interferon γ–producing T cells, increased delayed-type hypersensitivity responses, and higher serum levels of anti-MOG antibody. In vivo blockade of PD-1 resulted in increased antigen-specific T cell expansion, activation, and cytokine production. Interestingly, PD-L2 but not PD-L1 blockade in WT animals also resulted in disease augmentation. Our data are the first demonstration that the PD-1 pathway plays a critical role in regulating EAE

    Increased leptin and A-FABP levels in relapsing and progressive forms of MS

    Get PDF
    BACKGROUND: Leptin and adipocyte-fatty acid binding protein (A-FABP) are produced by white adipose tissue and may play a role in chronic inflammation in Multiple Sclerosis (MS). To assess leptin and A-FABP in relapsing and progressive forms of MS. METHODS: Adipokine levels were measured in untreated adult relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), primary progressive MS (PPMS) and Healthy control (HC). Pediatric-onset MS (POMS) and pediatric healthy controls (PHC) were also assessed. Leptin and A-FABP levels were measured in serum by ELISA. Groups were compared using linear mixed-effects model. RESULTS: Excluding two patients with Body Mass Index (BMI) > 50, a significant difference in leptin level was found between RRMS and HC controlling for age (p = 0.007), SPMS and HC controlling for age alone (p = 0.002), or age and BMI (p = 0.007). A-FABP levels were higher in SPMS than HC (p = 0.007), controlling for age and BMI. Differences in A-FABP levels between POMS and PHC was observed after controlling for age (p = 0.019), but not when BMI was added to the model (p = 0.081). CONCLUSION: Leptin and A-FABP levels are highest in SPMS compared to HC, suggesting a role in pathogenesis of this disease subtype. A-FABP levels are increased in POMS patients and may play a role in the early stages of disease
    corecore