105 research outputs found
Organic Materials in Silico:From force field development to predicting dielectric properties
Organic electronics have a wide range of applications, from utilizing the solar energy for electricity generation to devices that seamlessly integrate with biological surfaces. The virtually unlimited chemical space of organic molecules, while offering the possibility of ideal molecules for each of these applications, also makes it more challenging to find them. A common approach to navigating through this vast chemical space towards better performing devices is identifying design rules by correlating changes in molecular or morphological structure to the improvement of specific properties. Functionalizing organic molecules with polar side chains is one such design rule that has become a ubiquitous strategy in the search for the next generation organic materials. This thesis elucidates, by advancing and applying computational methods, what happens at the molecular level by the inclusion of polar side chains and provides a deeper understanding of the interplay between molecular structure and dielectric and electronic properties, with the aim of guiding the field towards engineering better performing devices. A strong emphasis is given to both the accurate computation of the dielectric constant and the understanding of the relevant dielectric contributions for organic electronics. Additionally, the computational method introduced in this thesis, which is readily applicable in various materials science and biophysics studies, allows approaching quantum mechanical accuracy using computationally much more feasible molecular dynamics simulations. Overall, the findings of this thesis contribute to the goal of materials design based on computational approaches by improving existing models as well as the understanding of several property-structure relationships
Reactive Martini:Chemical Reactions in Coarse-Grained Molecular Dynamics Simulations
Chemical reactions are ubiquitous in both materials and the biophysical sciences. While coarse-grained (CG) molecular dynamics simulations are often needed to study the spatiotemporal scales present in these fields, chemical reactivity has not been explored thoroughly in CG models. In this work, a new approach to model chemical reactivity is presented for the widely used Martini CG Martini model. Employing tabulated potentials with a single extra particle for the angle dependence, the model provides a generic framework for capturing bonded topology changes using nonbonded interactions. As a first example application, the reactive model is used to study the macrocycle formation of benzene-1,3-dithiol molecules through the formation of disulfide bonds. We show that starting from monomers, macrocycles with sizes in agreement with experimental results are obtained using reactive Martini. Overall, our reactive Martini framework is general and can be easily extended to other systems. All of the required scripts and tutorials to explain its use are provided online.</p
How ethylene glycol chains enhance the dielectric constant of organic semiconductors : molecular origin and frequency dependence
Incorporating ethylene glycols (EGs) into organic semiconductors has become the prominent strategy to increase their dielectric constant. However, EG’s contribution to the dielectric constant is due to nuclear relaxations, and therefore, its relevance for various organic electronic applications depends on the time scale of these relaxations, which remains unknown. In this work, by means of a new computational protocol based on polarizable molecular dynamics simulations, the time- and frequency-dependent dielectric constant of a representative fullerene derivative with EG side chains is predicted, the origin of its unusually high dielectric constant is explained, and design suggestions are made to further increase it. Finally, a dielectric relaxation time of ∼1 ns is extracted which suggests that EGs may be too slow to reduce the Coulombic screening in organic photovoltaics but are definitely fast enough for organic thermoelectrics with much lower charge carrier velocities
IS SECTORAL SHIFTS HYPOTHESIS VALID IN THE TURKISH ECONOMY?
The aim of this study is to analyze reasons of unemployment and the validity of sectoral shift hypothesis developed by Lilien for the Turkish economy between years 2005 and 2014. The causal linkage between variables is analyzed by Toda–Yamamoto Granger causality, frequency domain causality and asymmetric causality test methods. The results obtained from all tests show that the main reasons of unemployment in the Turkish economy are the cyclical factors. It is not possible to speak about validity of sectoral shifts hypothesis in the economy. The intensity and direction of interactions between macroeconomic variables may differ due to time frequencies. The existence of causality may disappear in the long run while it exists in the short run. Also conventional causality analysis methods do not decompose the causality into positive and/or negative shocks and so they could not explain the direction of causality. In order to test causation linkage between variables and to find direction of causality in different shock types we employ recently developed causality analysis methods which would increase the quality of the study
Performance Analysis of Coherent and Noncoherent Modulation under I/Q Imbalance
In-phase/quadrature-phase Imbalance (IQI) is considered a major
performance-limiting impairment in direct-conversion transceivers. Its effects
become even more pronounced at higher carrier frequencies such as the
millimeter-wave frequency bands being considered for 5G systems. In this paper,
we quantify the effects of IQI on the performance of different modulation
schemes under multipath fading channels. This is realized by developing a
general framework for the symbol error rate (SER) analysis of coherent phase
shift keying, noncoherent differential phase shift keying and noncoherent
frequency shift keying under IQI effects. In this context, the moment
generating function of the signal-to-interference-plus-noise-ratio is first
derived for both single-carrier and multi-carrier systems suffering from
transmitter (TX) IQI only, receiver (RX) IQI only and joint TX/RX IQI.
Capitalizing on this, we derive analytic expressions for the SER of the
different modulation schemes. These expressions are corroborated by comparisons
with corresponding results from computer simulations and they provide insights
into the dependence of IQI on the system parameters. We demonstrate that the
effects of IQI differ considerably depending on the considered system as some
cases of single-carrier transmission appear robust to IQI, whereas
multi-carrier systems experiencing IQI at the RX require compensation in order
to achieve a reliable communication link
Can the Dielectric Constant of Fullerene Derivatives Be Enhanced by Side-Chain Manipulation? A Predictive First-Principles Computational Study
The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn Sham method to calculate the electronic contribution to the dielectric constant for fullerene C-60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C-60
Q-Force:Quantum Mechanically Augmented Molecular Force Fields
The quality of molecular dynamics simulations strongly depends on the accuracy of the underlying force fields (FFs) that determine all intra- and intermolecular interactions of the system. Commonly, transferable FF parameters are determined based on a representative set of small molecules. However, such an approach sacrifices accuracy in favor of generality. In this work, an open-source and automated toolkit named Q-Force is presented, which augments these transferable FFs with molecule-specific bonded parameters and atomic charges that are derived from quantum mechanical (QM) calculations. The molecular fragmentation procedure allows treatment of large molecules (>200 atoms) with a low computational cost. The generated Q-Force FFs can be used at the same computational cost as transferable FFs, but with improved accuracy: We demonstrate this for the vibrational properties on a set of small molecules and for the potential energy surface on a complex molecule (186 atoms) with photovoltaic applications. Overall, the accuracy, user-friendliness, and minimal computational overhead of the Q-Force protocol make it widely applicable for atomistic molecular dynamics simulations.</p
Modelling structural properties of cyanine dye nanotubes at coarse-grained level
Self-assembly is a ubiquitous process spanning from biomolecular aggregates to nanomaterials. Even though the resulting aggregates can be studied through experimental techniques, the dynamic pathways of the process and the molecular details of the final structures are not necessarily easy to resolve. Consequently, rational design of self-assembling aggregates and their properties remains extremely challenging. At the same time, modelling the self-assembly with computational methods is not trivial, because its spatio-temporal scales are usually beyond the limits of all-atom based simulations. The use of coarse-grained (CG) models can alleviate this limitation, but usually suffers from the lack of optimised parameters for the molecular constituents. In this work, we describe the procedure of parametrizing a CG Martini model for a cyanine dye (C8S3) that self-assembles into hollow double-walled nanotubes. First, we optimised the model based on quantum mechanics calculations and all-atom reference simulations, in combination with available experimental data. Then, we conducted random self-assembly simulations, and the performance of our model was tested on preformed assemblies. Our simulations provide information on the time-dependent local arrangement of this cyanine dye, when aggregates are being formed. Furthermore, we provide guidelines for designing and optimising parameters for similar self-assembling nanomaterials
- …