3 research outputs found

    Aberrant spindle dynamics and cytokinesis in Dictyostelium discoideum cells that lack glycogen synthase kinase 3

    Get PDF
    Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation

    Balanced cortical stiffness is important for efficient migration of Dictyostelium cells in confined environments

    No full text
    Dictyostelium discoideum cells resemble in many aspects human leukocytes and serve as a model to study actin cytoskeleton dynamics and cell migration of highly motile cells. Dictyostelium cells deficient in the actin-binding protein filamin (ddFLN) showed a surprisingly subtle change in phenotype with no or only minor effects in single cell motility. These findings were in contrast to the strong actin-crosslinking activities measured for filamin in vitro. In the present study, we set out to revisit the role of ddFLN in cell migration. For this purpose, we examined migration of wild-type, ddFLN-null and ddFLN-overexpressing cells under different conditions. In addition to cyclic-AMP chemotaxis assays using micropipettes, we explored cell migration under more confined conditions: an under-agarose 2D assay and a 3D assay employing a collagen matrix that was adapted from assays for leukocytes. Using 3D migration conditions, cells deficient in ddFLN displayed only a minor impairment of motility, similar to the results obtained for migration in 2D. However, cells overexpressing ddFLN showed a remarkable decrease in the speed of migration in particular in 3D environments. We suggest that these results are in line with an increased stiffening of the cortex due to the crosslinking activity of overexpressed ddFLN. Our conclusion is that the absolute level of ddFLN is critical for efficient migration. Furthermore, our results show that under conditions of increased mechanical stress, Dictyostelium cells, like leukocytes, switch to a bleb-based mode of movement. (C) 2015 Elsevier Inc. All rights reserved
    corecore