269 research outputs found
A generalised model for dynamic photocurrent responses at dye-sensitised liquid|liquid interfaces
The heterogeneous photoinduced electron transfer involving dyes adsorbed at the interface between two immiscible electrolyte solutions and redox molecules located in the adjacent phase manifests itself as photocurrent responses under potentiostatic conditions. Photocurrent transients as functions of the light intensity and bias potential allow the extraction of insightful information on the kinetics of the various processes associated with the photoinduced reaction. Previous analyses of this type of responses were based on phenomenological models that did not consider mass transport. In the present paper, we develop a generalised model for photocurrent transients taking into account the diffusion of reacting species to the interface. Comparison with the experimental data confirms that the responses can be described adequately by applying stationary conditions to the surface concentration of the photoactive species. Mechanistic aspects associated with the nature of the photocurrent relaxation on the microsecond time scale are examined. In particular, the dependence of the transient response on the light intensity indicates that charge recombination proceeds mainly as a first order reaction from an interfacial geminate ion pair. Coupled ion transfer reactions involving the photoproducts can also contribute to the photocurrent, depending on the formal ion transfer potential of the corresponding species
Reversible Voltage-Induced Assembly of Au Nanoparticles at Liquid|Liquid Interfaces
The voltage-induced assembly of mercaptosuccinic acid-stabilized Au nanoparticles of 1.5 ± 0.4 nm diameter is investigated at the polarizable water|1,2-dichloroethane interface. Admittance measurements and quasi-elastic laser scattering (QELS) studies reveal that the surface concentration of the nanoparticle at the liquid|liquid boundary is reversibly controlled by the applied bias potential. The electrochemical and optical measurements provide no evidence of irreversible aggregation or deposition of the particles at the interface. Analysis of the electrocapillary curves constructed from the dependence of the frequency of the capillary waves on the applied potential and bulk particle concentration indicates that the maximum particle surface density is 3.8 à 1013cm-2, which corresponds to 67% of a square closed-pack arrangement. This system provides a unique example of reversible assembly of nanostructures at interfaces, in which the density can be effectively tuned by the applied potential bias
Proton-Coupled Oxygen Reduction at Liquid-Liquid Interfaces Catalyzed by Cobalt Porphine
Cobalt porphine (CoP) dissolved in the organic phase of a biphasic system is used to catalyze O2 reduction by an electron donor, ferrocene (Fc). Using voltammetry at the interface between two immiscible electrolyte solutions (ITIES), it is possible to drive this catalytic reduction at the interface as a function of the applied potential difference, where aqueous protons and organic electron donors combine to reduce O2. The current signal observed corresponds to a proton-coupled electron transfer (PCET) reaction, as no current and no reaction can be observed in the absence of either the aqueous acid, CoP, Fc, or O2
Pseudo-single crystal electrochemistry on polycrystalline electrodes : visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction
The influence of electrode surface structure on electrochemical reaction rates and mechanisms is a major theme in electrochemical research, especially as electrodes with inherent structural heterogeneities are used ubiquitously. Yet, probing local electrochemistry and surface structure at complex surfaces is challenging. In this paper, high spatial resolution scanning electrochemical cell microscopy (SECCM) complemented with electron backscatter diffraction (EBSD) is demonstrated as a means of performing âpseudo-single-crystalâ electrochemical measurements at individual grains of a polycrystalline platinum electrode, while also allowing grain boundaries to be probed. Using the Fe2+/3+ couple as an illustrative case, a strong correlation is found between local surface structure and electrochemical activity. Variations in electrochemical activity for individual high index grains, visualized in a weakly adsorbing perchlorate medium, show that there is higher activity on grains with a significant (101) orientation contribution, compared to those with (001) and (111) contribution, consistent with findings on single-crystal electrodes. Interestingly, for Fe2+ oxidation in a sulfate medium a different pattern of activity emerges. Here, SECCM reveals only minor variations in activity between individual grains, again consistent with single-crystal studies, with a greatly enhanced activity at grain boundaries. This suggests that these sites may contribute significantly to the overall electrochemical behavior measured on the macroscale
Optimisation of the conditions for stripping voltammetric analysis at liquid-liquid interfaces supported at micropore arrays: a computational simulation
Micropore membranes have been used to form arrays of micro interfaces between immiscible electroly tesolutions (ÎŒITIES) as a basis for the sensing of non-redoxactiveions. Implementation of stripping voltammetry as asensing method at these arrays of ÎŒITIES was applied recently to detect drugs and biomolecules at low concentrations. The present study uses computational simulation to investigate the optimum conditions for stripping voltammetricsensing at the ÎŒITIES array. In this scenario, thediffusion of ions in both the aqueous and the organic phasescontributes to the sensing response. The influence of the preconcentration time, the micropore aspect ratio, the location of the micro interface within the pore, the ratio of the diffusion coefficients of the analyte ion in the organic and aqueous phases, and the pore wall angle were investigated. The simulations reveal that the accessibility of the microinterfaces during the preconcentration period should not be hampered by a recessed interface and that diffusional transport in the phase where the analyte ions are preconcentrated should be minimized. This will ensure that the ions are accumulated within the micropores close to the interface and thus be readily available for back transferduring the stripping process. On the basis of the results, an optimal combination of the examined parameters is proposed,which together improve the stripping voltammetric signal and provide an improvement in the detection limit
Influence of the Water Content on the Diffusion Coefficients of Liâș and Water across Naphthalenic Based Copolyimide Cation-Exchange Membranes
The transport of lithium ions in cation-exchange membranes based on sulfonated copolyimide membranes is reported. Diffusion coefficients of lithium are estimated as a function of the water content in membranes by using pulsed field gradient (PFG) NMR and electrical conductivity techniques. It is found that the lithium transport slightly decreases with the diminution of water for membranes with water content lying in the range 14 < λ < 26.5, where λ is the number of molecules of water per fixed sulfonate group. For λ < 14, the value of the diffusion coefficient of lithium experiences a sharp decay with the reduction of water in the membranes. The dependence of the diffusion of lithium on the humidity of the membranes calculated from conductivity data using NernstâPlanck type equations follows a trend similar to that observed by NMR. The possible explanation of the fact that the Haven ratio is higher than the unit is discussed. The diffusion of water estimated by 1H PFG-NMR in membranes neutralized with lithium decreases as λ decreases, but the drop is sharper in the region where the decrease of the diffusion of protons of water also undergoes considerable reduction. The diffusion of lithium ions computed by full molecular dynamics is similar to that estimated by NMR. However, for membranes with medium and low concentration of water, steady state conditions are not reached in the computations and the diffusion coefficients obtained by MD simulation techniques are overestimated. The curves depicting the variation of the diffusion coefficient of water estimated by NMR and full dynamics follow parallel trends, though the values of the diffusion coefficient in the latter case are somewhat higher. The WAXS diffractograms of fully hydrated membranes exhibit the ionomer peak at q = 2.8 nmâ»1, the peak being shifted to higher q as the water content of the membranes decreases. The diffractograms present additional peaks at higher q, common to wet and dry membranes, but the peaks are better resolved in the wet membranes. The ionomer peak is not detected in the diffractograms of dry membranes.The authors acknowledge financial support provided by the DGICYT (DirecciĂłn General de InvestigaciĂłn CientifĂca y TecnoloÌgica) through Grant MAT2011-29174-C02-02
Further Support to the Uncoupling-to-Survive Theory: The Genetic Variation of Human UCP Genes Is Associated with Longevity
In humans Uncoupling Proteins (UCPs) are a group of five mitochondrial inner membrane transporters with variable tissue expression, which seem to function as regulators of energy homeostasis and antioxidants. In particular, these proteins uncouple respiration from ATP production, allowing stored energy to be released as heat. Data from experimental models have previously suggested that UCPs may play an important role on aging rate and lifespan. We analyzed the genetic variability of human UCPs in cohorts of subjects ranging between 64 and 105 years of age (for a total of 598 subjects), to determine whether specific UCP variability affects human longevity. Indeed, we found that the genetic variability of UCP2, UCP3 and UCP4 do affect the individual's chances of surviving up to a very old age. This confirms the importance of energy storage, energy use and modulation of ROS production in the aging process. In addition, given the different localization of these UCPs (UCP2 is expressed in various tissues including brain, hearth and adipose tissue, while UCP3 is expressed in muscles and Brown Adipose Tissue and UCP4 is expressed in neuronal cells), our results may suggest that the uncoupling process plays an important role in modulating aging especially in muscular and nervous tissues, which are indeed very responsive to metabolic alterations and are very important in estimating health status and survival in the elderly
Solvation free energy profile of the SCN- ion across the water-1,2-dichloroethane liquid/liquid interface. A computer simulation study
The solvation free energy profile of a single SCN- ion is calculated across the water-1,2-dichloroethane liquid/liquid interface at 298 K by the constraint force method. The obtained results show that the free energy cost of transferring the ion from the aqueous to the organic phase is about 70 kJ/mol, The free energy profile shows a small but clear well at the aqueous side of the interface, in the subsurface region of the water phase, indicating the ability of the SCN- ion to be adsorbed in the close vicinity of the interface. Upon entrance of the SCN- ion to the organic phase a coextraction of the water molecules of its first hydration shell occurs. Accordingly, when it is located at the boundary of the two phases the SCN- ion prefers orientations in which its bulky S atom is located at the aqueous side, and the small N atom, together with its first hydration shell, at the organic side of the interface
- âŠ