3 research outputs found
Disruption of redox homeostasis in liver function and activation of apoptosis on consumption of aspartame in folate deficient rat model
This study assesses the effect of long-term intake of aspartame on liver function and apoptosis signaling pathway in the Wistar albino rats. Several reports have suggested that methanol is one of the major metabolites of Aspartame. Non-primate animals are usually resistant to methanol-induced metabolic acidosis due to high levels of hepatic folate content; hence a folate deficiency model was induced by treating animals with methotrexate (MTX) prior to aspartame exposure. The aspartame treated MTX animals exhibited a marked significant increase in hepatic alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) and lactic acid dehydrogenase (LDH) activity compared to controls. Aspartame treated MTX animals additionally exhibited down-regulation of genes namely B-cell lymphoma 2 (Bcl2) expression and up-regulation of Bcl-2-associated X protein (Bax), Fas-associated protein with death domain (FADD) and Caspase 3, 9 genes and apoptotic protein expression, indicating the augmentation of hepatic apoptosis. Nuclear condensation, micro vacuole formation in the cytoplasm and necrosis were observed in the liver of the aspartame treated animals on histopathology evaluation. Additionally, Immunohistochemical analysis revealed a significant increase in positive cells expressing Fas, FADD, Bax and Caspase 9 protein, indicating an increase in apoptotic protein expression in the liver. Thus, Aspartame may act as a chemical stressor which alters the functional status of liver, leading to hepatotoxicity
Oxidative stress evoked damages leading to attenuated memory and inhibition of NMDAR–CaMKII–ERK/CREB signalling on consumption of aspartame in rat model
Many controversial reports are available on the use of aspartame as it releases methanol as one of its metabolite during metabolism. The present study proposes to investigate whether long term (90 days) aspartame (40 mg/kg b.wt) administration could induce oxidative stress and alter the memory in Wistar strain male albino rats. To mimic the human methanol metabolism, methotrexate (MTX)-treated rats were included as a model to study the effects of aspartame. Wistar strain albino rats were administered with aspartame (40 mg/kg b.wt) orally and studied along with controls and MTX-treated controls. Aspartame interfered in the body weight and corticosterone levels in the rats. A marked increase in the mRNA and protein expression of neuronal nitric oxide synthase (nNOS) and induced nitric oxide synthase (iNOS) which resulted in the increased nitric oxide radical's level indicating that aspartame is a stressor. These reactive nitrogen species could be responsible for the altered cell membrane integrity and even cause death of neurons by necrosis or apoptosis. The animals showed a marked decrease in learning, spatial working and spatial recognition memory deficit in the Morris water maze and Y-maze performance task which could have resulted due to reduced hippocampal acetylcholine esterase (AChE) activity. The animal brain homogenate also revealed the decrease in the phosphorylation of NMDAR1–CaMKII–ERK/CREB signalling pathway, which well documents the inhibition of phosphorylation leads to the excitotoxicity of the neurons and memory decline. This effect may be due to methanol which may also activate the NOS levels, microglia and astrocytes, inducing neurodegeneration in brain. Neuronal shrinkage of hippocampal layer due to degeneration of pyramidal cells revealed the abnormal neuronal morphology of pyramidal cell layers in the aspartame treated animals. These findings demonstrate that aspartame metabolites could be a contributing factor for the development of oxidative stress in the brain. Keywords: Aspartame, Memory, Folate deficient rat model, Oxidative stress, Free radica
Ethanol Impairs NRF2/Antioxidant and Growth Signaling in the Intact Placenta In Vivo and in Human Trophoblasts
NRF2 is a redox-sensitive transcription factor that depending on the duration or magnitude of the stress, either translocates to the nucleus (beneficial) or is degraded in the cytosol (harmful). However, the role of NRF2-based mechanism(s) under ethanol (E)-induced developmental toxicity in the placental context remains unknown. Here, we used a rat prenatal model of maternal alcohol stress consisting of intermittent ethanol vapor (IEV) daily from GD11 to GD20 with a 6 h ON/18 h OFF in a vapor chamber and in vitro placental model consisting of HTR-8 trophoblasts exposed to 86 mM of E for either 24 h or 48 h. The role of NRF2 was evaluated through the NRF2-transactivation reporter assay, qRT-PCR, and Western blotting for NRF2 and cell growth-promoting protein, and cell proliferation assay. In utero and in vitro E decreased the nuclear NRF2 content and diminished its transactivation ability along with dysregulation of the proliferation indices, PCNA, CYCLIN-D1, and p21. This was associated with a ~50% reduction in cell proliferation in vitro in trophoblasts. Interestingly, this was found to be partially rescued by ectopic Nrf2 overexpression. These results indicate that ethanol-induced dysregulation of NRF2 coordinately regulates PCNA/CYCLIN-D1/p21 involving growth network, at least partially to set a stage for placental perturbations