13 research outputs found

    The Association of AMPK with ULK1 Regulates Autophagy

    Get PDF
    Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex

    Autophagy: Regulation and role in disease

    Full text link

    The history of organoplatinum chemistry in Iran: 40-year research

    No full text

    Autophagy and signaling: their role in cell survival and cell death.

    No full text
    Macroautophagy is a vacuolar, self-digesting mechanism responsible for the removal of long-lived proteins and damaged organelles by the lysosome. The discovery of the ATG genes has provided key information about the formation of the autophagosome, and about the role of macroautophagy in allowing cells to survive during nutrient depletion and/or in the absence of growth factors. Two connected signaling pathways encompassing class-I phosphatidylinositol 3-kinase and (mammalian) target of rapamycin play a central role in controlling macroautophagy in response to starvation. However, a considerable body of literature reports that macroautophagy is also a cell death mechanism that can occur either in the absence of detectable signs of apoptosis (via autophagic cell death) or concomitantly with apoptosis. Macroautophagy is activated by signaling pathways that also control apoptosis. The aim of this review is to discuss the signaling pathways that control macroautophagy during cell survival and cell death

    D-Chiro-Inositol Glycans in Insulin Signaling and Insulin Resistance

    No full text
    Classical actions of insulin involve increased glucose uptake from the bloodstream and its metabolism in peripheral tissues, the most important and relevant effects for human health. However, nonoxidative and oxidative glucose disposal by activation of glycogen synthase (GS) and mitochondrial pyruvate dehydrogenase (PDH) remain incompletely explained by current models for insulin action. Since the discovery of insulin receptor Tyr kinase activity about 25 years ago, the dominant paradigm for intracellular signaling by insulin invokes protein phosphorylation downstream of the receptor and its primary Tyr phosphorylated substrates—the insulin receptor substrate family of proteins. This scheme accounts for most, but not all, intracellular actions of insulin. Essentially forgotten is the previous literature and continuing work on second messengers generated in cells in response to insulin. Treatment and even prevention of diabetes and metabolic syndrome will benefit from a more complete elucidation of cellular-signaling events activated by insulin, to include the actions of second messengers such as glycan molecules that contain D-chiro-inositol (DCI). The metabolism of DCI is associated with insulin sensitivity and resistance, supporting the concept that second messengers have a role in responses to and resistance to insulin
    corecore