1,434 research outputs found
Development of an electrical model of a resistive micromegas
We have developped a model to simulate the behavior of a resistive micromegas
(MICROMEsh GAseous Structure) detector to a discharge using an electronic
software (Virtuoso)
Practical Schemes For Privacy & Security Enhanced RFID
Proper privacy protection in RFID systems is important. However, many of the
schemes known are impractical, either because they use hash functions instead
of the more hardware efficient symmetric encryption schemes as a efficient
cryptographic primitive, or because they incur a rather costly key search time
penalty at the reader. Moreover, they do not allow for dynamic, fine-grained
access control to the tag that cater for more complex usage scenarios.
In this paper we investigate such scenarios, and propose a model and
corresponding privacy friendly protocols for efficient and fine-grained
management of access permissions to tags. In particular we propose an efficient
mutual authentication protocol between a tag and a reader that achieves a
reasonable level of privacy, using only symmetric key cryptography on the tag,
while not requiring a costly key-search algorithm at the reader side. Moreover,
our protocol is able to recover from stolen readers.Comment: 18 page
Parameterized Complexity of the k-anonymity Problem
The problem of publishing personal data without giving up privacy is becoming
increasingly important. An interesting formalization that has been recently
proposed is the -anonymity. This approach requires that the rows of a table
are partitioned in clusters of size at least and that all the rows in a
cluster become the same tuple, after the suppression of some entries. The
natural optimization problem, where the goal is to minimize the number of
suppressed entries, is known to be APX-hard even when the records values are
over a binary alphabet and , and when the records have length at most 8
and . In this paper we study how the complexity of the problem is
influenced by different parameters. In this paper we follow this direction of
research, first showing that the problem is W[1]-hard when parameterized by the
size of the solution (and the value ). Then we exhibit a fixed parameter
algorithm, when the problem is parameterized by the size of the alphabet and
the number of columns. Finally, we investigate the computational (and
approximation) complexity of the -anonymity problem, when restricting the
instance to records having length bounded by 3 and . We show that such a
restriction is APX-hard.Comment: 22 pages, 2 figure
On the Complexity of -Closeness Anonymization and Related Problems
An important issue in releasing individual data is to protect the sensitive
information from being leaked and maliciously utilized. Famous privacy
preserving principles that aim to ensure both data privacy and data integrity,
such as -anonymity and -diversity, have been extensively studied both
theoretically and empirically. Nonetheless, these widely-adopted principles are
still insufficient to prevent attribute disclosure if the attacker has partial
knowledge about the overall sensitive data distribution. The -closeness
principle has been proposed to fix this, which also has the benefit of
supporting numerical sensitive attributes. However, in contrast to
-anonymity and -diversity, the theoretical aspect of -closeness has
not been well investigated.
We initiate the first systematic theoretical study on the -closeness
principle under the commonly-used attribute suppression model. We prove that
for every constant such that , it is NP-hard to find an optimal
-closeness generalization of a given table. The proof consists of several
reductions each of which works for different values of , which together
cover the full range. To complement this negative result, we also provide exact
and fixed-parameter algorithms. Finally, we answer some open questions
regarding the complexity of -anonymity and -diversity left in the
literature.Comment: An extended abstract to appear in DASFAA 201
Test in a beam of large-area Micromegas chambers for sampling calorimetry
Application of Micromegas for sampling calorimetry puts specific constraints
on the design and performance of this gaseous detector. In particular, uniform
and linear response, low noise and stability against high ionisation density
deposits are prerequisites to achieving good energy resolution. A
Micromegas-based hadronic calorimeter was proposed for an application at a
future linear collider experiment and three technologically advanced prototypes
of 11 m were constructed. Their merits relative to the
above-mentioned criteria are discussed on the basis of measurements performed
at the CERN SPS test-beam facility
Adaptive Alert Management for Balancing Optimal Performance among Distributed CSOCs using Reinforcement Learning
Large organizations typically have Cybersecurity Operations Centers (CSOCs) distributed at multiple locations that are independently managed, and they have their own cybersecurity analyst workforce. Under normal operating conditions, the CSOC locations are ideally staffed such that the alerts generated from the sensors in a work-shift are thoroughly investigated by the scheduled analysts in a timely manner. Unfortunately, when adverse events such as increase in alert arrival rates or alert investigation rates occur, alerts have to wait for a longer duration for analyst investigation, which poses a direct risk to organizations. Hence, our research objective is to mitigate the impact of the adverse events by dynamically and autonomously re-allocating alerts to other location(s) such that the performances of all the CSOC locations remain balanced. This is achieved through the development of a novel centralized adaptive decision support system whose task is to re-allocate alerts from the affected locations to other locations. This re-allocation decision is non-trivial because the following must be determined: (1) timing of a re-allocation decision, (2) number of alerts to be re-allocated, and (3) selection of the locations to which the alerts must be distributed. The centralized decision-maker (henceforth referred to as agent) continuously monitors and controls the level of operational effectiveness-LOE (a quantified performance metric) of all the locations. The agent's decision-making framework is based on the principles of stochastic dynamic programming and is solved using reinforcement learning (RL). In the experiments, the RL approach is compared with both rule-based and load balancing strategies. By simulating real-world scenarios, learning the best decisions for the agent, and applying the decisions on sample realizations of the CSOC's daily operation, the results show that the RL agent outperforms both approaches by generating (near-) optimal decisions that maintain a balanced LOE among the CSOC locations. Furthermore, the scalability experiments highlight the practicality of adapting the method to a large number of CSOC locations
Empowering Owners with Control in Digital Data Markets
We propose an approach for allowing data owners to trade their data in digital data market scenarios, while keeping control over them. Our solution is based on a combination of selective encryption and smart contracts deployed on a blockchain, and ensures that only authorized users who paid an agreed amount can access a data item. We propose a safe interaction protocol for regulating the interplay between a data owner and subjects wishing to purchase (a subset of) her data, and an audit process for counteracting possible misbehaviors by any of the interacting parties. Our solution aims to make a step towards the realization of data market platforms where owners can benefit from trading their data while maintaining control
Synthetic sequence generator for recommender systems - memory biased random walk on sequence multilayer network
Personalized recommender systems rely on each user's personal usage data in
the system, in order to assist in decision making. However, privacy policies
protecting users' rights prevent these highly personal data from being publicly
available to a wider researcher audience. In this work, we propose a memory
biased random walk model on multilayer sequence network, as a generator of
synthetic sequential data for recommender systems. We demonstrate the
applicability of the synthetic data in training recommender system models for
cases when privacy policies restrict clickstream publishing.Comment: The new updated version of the pape
Supporting Concurrency and Multiple Indexes in Private Access to Outsourced Data
Data outsourcing has recently emerged as a successful solution allowing individuals and organizations to delegate data and service management to external third parties. A major challenge in the data outsourcing scenario is how to guarantee proper privacy protection against the external server. Recent promising approaches rely on the organization of data in indexing structures that use encryption and the dynamic allocation of encrypted data to physical blocks for destroying the otherwise static relationship between data and the blocks in which they are stored. However, dynamic data allocation implies the need to re-write blocks at every read access, thus requesting exclusive locks that can affect concurrency. Also, these solutions only support search conditions on the values of the attribute used for building the indexing structure.
In this paper, we present an approach that overcomes such limitations by extending the recently proposed shuffle index structure with support for concurrency and multiple indexes. Support for concurrency relies on the use of several differential versions of the data index that are periodically reconciled and applied to the main data structure. Support for multiple indexes relies on the definition of secondary shuffle indexes that are then combined with the primary index in a single data structure whose content and allocation is unintelligible to the server. We show how using such differential versions and combined index structure guarantees privacy, provides support for concurrent accesses and multiple search conditions, and considerably increases the performance of the system and the applicability of the proposed solution
Open world reasoning in semantics-aware access control: A preliminary study
We address the relationships between theoretical foundations of Description Logics and practical applications of security-oriented Semantic Web techniques. We first describe the advantages of semantics-aware Access Control and review the state of the art; we also introduce the basics of Description Logics and the novel semantics they share. Then we translate the principle underlying the Little House Problem of DL into a real-world use case: by applying Open World Reasoning to the Knowledge Base modelling a Virtual Organization, we derive information not achievable with traditional Access Control methodologies. With this example, we also show that a general problem such as ontology mapping can take advantage of the enhanced semantics underlying OWL Lite and OWL DL to handle under-specified concepts
- …