869 research outputs found
Mint views: Materialized in-network top-k views in sensor networks
In this paper we introduce MINT (materialized in-network top-k) Views, a novel framework for optimizing the execution of continuous monitoring queries in sensor networks. A typical materialized view V maintains the complete results of a query Q in order to minimize the cost of future query executions. In a sensor network context, maintaining consistency between V and the underlying and distributed base relation R is very expensive in terms of communication. Thus, our approach focuses on a subset V(sube. V) that unveils only the k highest-ranked answers at the sink for some user defined parameter k. We additionally provide an elaborate description of energy-conscious algorithms for constructing, pruning and maintaining such recursively- defined in-network views. Our trace-driven experimentation with real datasets show that MINT offers significant energy reductions compared to other predominant data acquisition models
Power efficiency through tuple ranking in wireless sensor network monitoring
In this paper, we present an innovative framework for efficiently monitoring Wireless Sensor Networks (WSNs). Our framework, coined KSpot, utilizes a novel top-k query processing algorithm we developed, in conjunction with the concept of in-network views, in order to minimize the cost of query execution. For ease of exposition, consider a set of sensors acquiring data from their environment at a given time instance. The generated information can conceptually be thought as a horizontally fragmented base relation R. Furthermore, the results to a user-defined query Q, registered at some sink point,
can conceptually be thought as a view V . Maintaining consistency between V and R is very expensive in terms of communication and energy. Thus, KSpot focuses on a subset V′ (⊆ V ) that unveils only the k highest-ranked answers
at the sink, for some user defined parameter k. To illustrate the efficiency of our framework, we have implemented a real
system in nesC, which combines the traditional advantages of declarative acquisition frameworks, like TinyDB, with the ideas presented in this work. Extensive real-world testing and experimentation with traces from University of California-Berkeley, the University of Washington and Intel Research Berkeley, show that KSpot provides an up to 66% of energy savings compared to TinyDB, minimizes both the size and number of packets transmitted over the network (up to 77%), and prolongs the longevity of a WSN deployment to new scales
In-network data acquisition and replication in mobile sensor networks
This paper assumes a set of n mobile sensors that move in the Euclidean plane as a swarm. Our objectives are to explore a given geographic region by detecting and aggregating spatio-temporal events of interest and to store these events in the network until the user requests them. Such a setting finds applications in mobile environments where the user (i.e., the sink)
is infrequently within communication range from the field deployment. Our framework, coined SenseSwarm, dynamically partitions the sensing devices into perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to minimize energy consumption, while storage and replication takes place at the core nodes which are physically and logically shielded to threats and obstacles. To efficiently identify the nodes laying on the perimeter of the swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm with a low communication complexity. For storage and fault-tolerance we devise the Data Replication Algorithm (DRA), a voting-based replication scheme that enables the exact retrieval of values from the network in cases of failures. We also extend DRA with a spatio-temporal in-network aggregation
scheme based on minimum bounding rectangles to form the Hierarchical-DRA (HDRA) algorithm, which enables the approximate retrieval of events from the network. Our trace-driven experimentation shows that our framework can offer
significant energy reductions while maintaining high data availability rates. In particular, we found that when failures across all nodes are less than 60%, our framework can recover over 80% of detected values exactly
Lung Function in Gypsies in Greece
The relationship between lung function and smoking and dietary habits was examined in 121 Gypsies (62 males, 59 females) who were 14-70 y of age and who lived in Greece. All were examined clinically, after which they all participated in spirometry tests. Half of the study group had abnormal (< 80% of predicted) forced vital capacity, 36.4% had abnormal (< 80% of predicted) forced expiratory volume in 1 sec, and 5% had serious lung function disturbances (forced vital capacity < 50% of predicted). Approximately 70% of subjects were smokers, and their diets were rich in alcohol and meat; they ate very few salads and oranges. Consequently, decreased lung function might be a major health problem in Gypsies in Greece. Organization of preventive health strategies should improve the overall health of this study group
Intelligent search in social communities of smartphone users
Social communities of smartphone users have recently gained significant interest due to their wide social penetration. The applications in this domain,however, currently rely on centralized or cloud-like architectures for data sharing and searching tasks, introducing both data-disclosure and performance concerns. In this paper, we present a distributed search architecture for intelligent search of objects in a mobile social community. Our framework, coined SmartOpt, is founded on an in-situ data storage model, where captured objects remain local on smartphones and searches then take place over an intelligent multi-objective lookup structure we compute dynamically. Our MO-QRT structure optimizes several conflicting objectives, using a multi-objective evolutionary algorithm that calculates a diverse set of high quality non-dominated solutions in a single run.
Then a decision-making subsystem is utilized to tune the retrieval preferences of the query user. We assess our ideas both using trace-driven experiments with mobility and social patterns derived by Microsoft’s GeoLife project, DBLP and Pics
‘n’ Trails but also using our real Android SmartP2P3 system deployed over our SmartLab4 testbed of 40+ smartphones. Our study reveals that SmartOpt yields high query recall rates of 95%, with one order of magnitude less time and two
orders of magnitude less energy than its competitors
The micropulse framework for adaptive waking windows in sensor networks
In this paper we present MicroPulse, a novel framework for adapting the waking window of a sensing device S based on the data workload incurred by a query Q. Assuming a typical tree-based aggregation scenario, the waking window is defined as the time interval r during which S enables its transceiver in order to collect the results from its children. Minimizing the length of r enables S to conserve energy that can be used to prolong the longevity of the network and hence the quality of results. Our method is established on profiling recent data acquisition activity and on identifying the bottlenecks using an in-network execution of the Critical Path Method. We show through trace- driven experimentation with a real dataset that MicroPulse can reduce the energy cost of the waking window by three orders of magnitude
Unsupervised and semi-supervised co-salient object detection via segmentation frequency statistics
In this paper, we address the detection of co-occurring salient objects
(CoSOD) in an image group using frequency statistics in an unsupervised manner,
which further enable us to develop a semi-supervised method. While previous
works have mostly focused on fully supervised CoSOD, less attention has been
allocated to detecting co-salient objects when limited segmentation annotations
are available for training. Our simple yet effective unsupervised method
US-CoSOD combines the object co-occurrence frequency statistics of unsupervised
single-image semantic segmentations with salient foreground detections using
self-supervised feature learning. For the first time, we show that a large
unlabeled dataset e.g. ImageNet-1k can be effectively leveraged to
significantly improve unsupervised CoSOD performance. Our unsupervised model is
a great pre-training initialization for our semi-supervised model SS-CoSOD,
especially when very limited labeled data is available for training. To avoid
propagating erroneous signals from predictions on unlabeled data, we propose a
confidence estimation module to guide our semi-supervised training. Extensive
experiments on three CoSOD benchmark datasets show that both of our
unsupervised and semi-supervised models outperform the corresponding
state-of-the-art models by a significant margin (e.g., on the Cosal2015
dataset, our US-CoSOD model has an 8.8% F-measure gain over a SOTA unsupervised
co-segmentation model and our SS-CoSOD model has an 11.81% F-measure gain over
a SOTA semi-supervised CoSOD model).Comment: Accepted at IEEE WACV 202
A network-aware framework for energy-efficient data acquisition in wireless sensor networks
Wireless sensor networks enable users to monitor the physical world at an extremely high fidelity. In order to collect the data generated by these tiny-scale devices, the data management community has proposed the utilization of declarative data-acquisition frameworks. While these frameworks have facilitated the energy-efficient retrieval of data from the physical environment, they were agnostic of the underlying network topology and also did not support advanced query processing semantics. In this paper we present KSpot+, a distributed network-aware framework that optimizes network efficiency by combining three components: (i) the tree balancing module, which balances the workload of each sensor node by constructing efficient network topologies; (ii) the workload balancing module, which minimizes data reception inefficiencies by synchronizing the sensor network activity intervals; and (iii) the query processing module, which supports advanced query processing semantics. In order to validate the efficiency of our approach, we have developed a prototype implementation of KSpot+ in nesC and JAVA. In our experimental evaluation, we thoroughly assess the performance of KSpot+ using real datasets and show that KSpot+ provides significant energy reductions under a variety of conditions, thus significantly prolonging the longevity of a WSN
Perimeter-Based Data Replication in Mobile Sensor Networks
This paper assumes a set of n mobile sensors that move in the Euclidean plane as a swarm. Our objectives are to explore a given geographic region by detecting spatio-temporal events of interest and to store these events in the network until the user requests them. Such a setting finds applications in mobile environments where the user (i.e., the sink) is infrequently within communication range from the field deployment. Our framework, coined SenseSwarm, dynamically partitions the sensing devices into perimeter and core nodes. Data acquisition is scheduled at the perimeter, in order to minimize energy consumption, while storage and replication takes place at the core nodes which are physically and logically shielded to threats and obstacles. To efficiently identify the nodes laying on the perimeter of the swarm we devise the Perimeter Algorithm (PA), an efficient distributed algorithm with a low communication complexity. For storage and fault-tolerance we devise the Data Replication Algorithm (DRA), a voting-based replication scheme that enables the exact retrieval of events from the network in cases of failures. Our trace-driven experimentation shows that our framework can offer significant energy reductions while maintaining high data availability rates. In particular, we found that when failures are less than 60% failure then we can recover over 80% of generated events exactly
- …