4 research outputs found

    Memory decline evolves independently of disease activity in MS

    Get PDF
    The natural history of cognitive impairment in multiple sclerosis (MS) and its relationship with disease activity is not well known. In this study, we evaluate a prospective cohort of 44 MS patients who were followed every 3 months for 2 years. Cognitive evaluation was done at baseline and by the end of the study using the Brief Repeatable Battery-Neuropsychology. Clinical evaluation included assessment of new relapses and changes in disability (Extended Disability Status Scale (EDSS)) confirmed at 6 months. RESULTS: We found that verbal memory performance deteriorates after 2 years in patients with MS. These changes were observed in stable and active patients both in terms of relapses and disability progression, even at the beginning of the disease, and in patients with or without cognitive impairment at study entry. Attention and executive functions measured with the symbol digit modality test (SDMT) declined after 2 years in patients with confirmed disability progression. Furthermore, SDMT performance correlated with the EDSS change. CONCLUSIONS: Our findings indicate that verbal memory steadily declines in patients with MS from the beginning of the disease and independently of other parameters of disease activity

    Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice

    Get PDF
    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo

    Accelerated amyloid deposition, neurofibrillary degeneration and neuronal loss in double mutant APP/tau transgenic mice

    No full text
    Even though the idea that amyloid beta peptide accumulation is the primary event in the pathogenesis of Alzheimer's disease has become the leading hypothesis, the causal link between aberrant amyloid precursor protein processing and tau alterations in this type of dementia remains controversial. We further investigated the role of beta-amyloid production/deposition in tau pathology and neuronal cell death in the mouse brain by crossing Tg2576 and VLW lines expressing human mutant amyloid precursor protein and human mutant tau, respectively. The resulting double transgenic mice showed enhanced amyloid deposition accompanied by neurofibrillary degeneration and overt neuronal loss in selectively vulnerable brain limbic areas. These findings challenge the idea that tau pathology in Alzheimer's disease is merely a downstream effect of amyloid production/deposition and suggest that reciprocal interactions between beta-amyloid and tau alterations may take place in vivo

    Gene Therapy for Misfolding Protein Diseases of the Central Nervous System

    No full text
    Protein aggregation as a result of misfolding is a common theme underlying neurodegenerative diseases. Accordingly, most recent studies aim to prevent protein misfolding and/or aggregation as a strategy to treat these pathologies. For instance, state-of-the-art approaches, such as silencing protein overexpression by means of RNA interference, are being tested with positive outcomes in preclinical models of animals overexpressing the corresponding protein. Therapies designed to treat central nervous system diseases should provide accurate delivery of the therapeutic agent and long-term or chronic expression by means of a nontoxic delivery vehicle. After several years of technical advances and optimization, gene therapy emerges as a promising approach able to fulfill those requirements. In this review we will summarize the latest improvements achieved in gene therapy for central nervous system diseases associated with protein misfolding (e.g., amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases), as well as the most recent approaches in this field to treat these pathologies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13311-013-0191-8) contains supplementary material, which is available to authorized users
    corecore