115 research outputs found

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing

    Get PDF
    In this paper, we present the surface modification of multilayer graphene electrodes with platinum (Pt) nanoparticles (NPs) using spark ablation. This method yields an individually selective local printing of NPs on an electrode surface at room temperature in a dry process. NP printing is performed as a post-process step to enhance the electrochemical characteristics of graphene electrodes. The NP-printed electrode shows significant improvements in impedance, charge storage capacity (CSC), and charge injection capacity (CIC), versus the equivalent electrodes without NPs. Specifically, electrodes with 40% NP surface density demonstrate 4.5 times lower impedance, 15 times higher CSC, and 4 times better CIC. Electrochemical stability, assessed via continuous cyclic voltammetry (CV) and voltage transient (VT) tests, indicated minimal deviations from the initial performance, while mechanical stability, assessed via ultrasonic vibration, is also improved after the NP printing. Importantly, NP surface densities up to 40% maintain the electrode optical transparency required for compatibility with optical imaging and optogenetics. These results demonstrate selective NP deposition and local modification of electrochemical properties in graphene electrodes for the first time, enabling the cohabitation of graphene electrodes with different electrochemical and optical characteristics on the same substrate for neural interfacing.</p

    Membrane Modulates Affinity for Calcium Ion to Create an Apparent Cooperative Binding Response by Annexin a5

    Get PDF
    Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca2+) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca2+ in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca2+ differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca2+ affinity to a membrane-associated, higher Ca2+ affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca2+ influx is the basis for the cooperative response of annexin a5 toward Ca2+, and the role of membrane organization in this response

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    Ruthenium‐Containing Linear Helicates and Mesocates with Tuneable p53‐Selective Cytotoxicity in Colorectal Cancer Cells

    Get PDF
    The ligands L1 and L2 both form separable dinuclear double‐stranded helicate and mesocate complexes with RuII. In contrast to clinically approved platinates, the helicate isomer of [Ru2(L1)2]4+ was preferentially cytotoxic to isogenic cells (HCT116 p53−/−), which lack the critical tumour suppressor gene. The mesocate isomer shows the reverse selectivity, with the achiral isomer being preferentially cytotoxic towards HCT116 p53+/+. Other structurally similar RuII‐containing dinuclear complexes showed very little cytotoxic activity. This study demonstrates that alterations in ligand or isomer can have profound effects on cytotoxicity towards cancer cells of different p53 status and suggests that selectivity can be “tuned” to either genotype. In the search for compounds that can target difficult‐to‐treat tumours that lack the p53 tumour suppressor gene, [Ru2(L1)2]4+ is a promising compound for further development

    The magnetically quiet solar surface dominates HARPS-N solar RVs during low activity

    Get PDF
    Using images from the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory (SDO/HMI), we extract the radial-velocity (RV) signal arising from the suppression of convective blue-shift and from bright faculae and dark sunspots transiting the rotating solar disc. We remove these rotationally modulated magnetic-activity contributions from simultaneous radial velocities observed by the HARPS-N solar feed to produce a radial-velocity time series arising from the magnetically quiet solar surface (the ‘inactive-region radial velocities’). We find that the level of variability in the inactive-region radial velocities remains constant over the almost 7 year baseline and shows no correlation with well-known activity indicators. With an RMS of roughly 1 m s−1, the inactive-region radial-velocity time series dominates the total RV variability budget during the decline of solar cycle 24. Finally, we compare the variability amplitude and timescale of the inactive-region radial velocities with simulations of supergranulation. We find consistency between the inactive-region radial-velocity and simulated time series, indicating that supergranulation is a significant contribution to the overall solar radial velocity variability, and may be the main source of variability towards solar minimum. This work highlights supergranulation as a key barrier to detecting Earth twins

    The magnetically quiet solar surface dominates HARPS-N solar RVs during low activity

    Full text link
    Using images from the Helioseismic and Magnetic Imager aboard the \textit{Solar Dynamics Observatory} (SDO/HMI), we extract the radial-velocity (RV) signal arising from the suppression of convective blue-shift and from bright faculae and dark sunspots transiting the rotating solar disc. We remove these rotationally modulated magnetic-activity contributions from simultaneous radial velocities observed by the HARPS-N solar feed to produce a radial-velocity time series arising from the magnetically quiet solar surface (the 'inactive-region radial velocities'). We find that the level of variability in the inactive-region radial velocities remains constant over the almost 7 year baseline and shows no correlation with well-known activity indicators. With an RMS of roughly 1 m/s, the inactive-region radial-velocity time series dominates the total RV variability budget during the decline of solar cycle 24. Finally, we compare the variability amplitude and timescale of the inactive-region radial velocities with simulations of supergranulation. We find consistency between the inactive-region radial-velocity and simulated time series, indicating that supergranulation is a significant contribution to the overall solar radial velocity variability, and may be the main source of variability towards solar minimum. This work highlights supergranulation as a key barrier to detecting Earth twins.Comment: 12 pages, 11 figures, accepted to MNRA

    A Student\u27s Guide to giant Viruses Infecting Small Eukaryotes: From Acanthamoeba to Zooxanthellae

    Get PDF
    The discovery of infectious particles that challenge conventional thoughts concerning “what is a virus” has led to the evolution a new field of study in the past decade. Here, we review knowledge and information concerning “giant viruses”, with a focus not only on some of the best studied systems, but also provide an effort to illuminate systems yet to be better resolved. We conclude by demonstrating that there is an abundance of new host–virus systems that fall into this “giant” category, demonstrating that this field of inquiry presents great opportunities for future research

    Control of metallo-supramolecular assemblies via steric, hydrogen bonding and argentophilic interactions; formation of a 3-dimensional polymer of circular helicates

    Get PDF
    This work shows how multiple non-covalent interactions are employed to control metallosupramolecular architectures and we demonstrate that a ligand, which contains two bidentate domains separated by a ArOH spacer, forms a mesocate when complexed with Ag(I). However, changing this to an ArOCH2CH2Ph spacer unit results in a 1-dimensional helical polymer upon reaction with the same cation. Reaction of Ag(I) with the ArOMe derivative gives a hexanuclear circular helicate which forms inter-assembly Ag⋯Ag interactions resulting in a 3-dimensional honeycomb-like polymer of hexanuclear circular helicates
    corecore