14 research outputs found

    A BATCH REACTOR STUDY OF THE EFFECT OF DEASPHALTING ON HYDROTREATING OF HEAVY OIL

    No full text
    The effect of deasphalting of heavy oil with different degrees of asphaltenes precipitation on catalytic hydrotreating is reported in this work. Deasphalted oils were obtained in a pressurized vessel using nheptane and n-pentane as solvents. Various samples with different amounts of asphaltenes were prepared by varying precipitation conditions. Hydrotreating of deasphalted oils was conducted with a commercial NiMo catalyst in a batch reactor at the following reaction conditions: hydrogen pressure of 100 kg/cm2, temperature of 400 8C, stirring rate of 750 rpm and reaction time of 4 h. The heavy oil, the deasphalted oils and the hydrotreated products were characterized by sulfur, metals (Ni, V), asphaltene contents, and API gravity. Metals and carbon contents as well as textural properties and X-ray diffraction were also determined on fresh, spent and regenerated catalysts

    Integrating an Analytical Methods and Mass Spectral Database with Cheminformatics Capabilities

    No full text
    Poster for Cheminformatics Resources of U.S. Governmental Organizations on October 18-20, 2023 in Silver Spring, MDScience Inventory, CCTE products: https://cfpub.epa.gov/si/si_public_search_results.cfm?advSearch=true&showCriteria=2&keyword=CCTE&TIMSType=&TIMSSubTypeID=&epaNumber=&ombCat=Any&dateBeginPublishedPresented=07/01/2017&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&DEID=&personName=&personID=&role=Any&journalName=&journalID=&publisherName=&publisherID=&sortBy=pubDate&count=25</p

    Wikipedia on the CompTox Chemicals Dashboard:Connecting Resources to Enrich Public Chemical Data

    No full text
    The online encyclopedia Wikipedia aggregates a large amount of data on chemistry, encompassing well over 20,000 individual Wikipedia pages and serves the general public as well as the chemistry community. Many other chemical databases and services utilize these data, and previous projects have focused on methods to index, search, and extract it for review and use. We present a comprehensive effort that combines bulk automated data extraction over tens of thousands of pages, semiautomated data extraction over hundreds of pages, and fine-grained manual extraction of individual lists and compounds of interest. We then correlate these data with the existing contents of the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database. This was performed with a number of intentions including ensuring as complete a mapping as possible between the Dashboard and Wikipedia so that relevant snippets of the article are loaded for the user to review. Conflicts between Dashboard content and Wikipedia in terms of, for example, identifiers such as chemical registry numbers, names, and InChIs and structure-based collisions such as SMILES were identified and used as the basis of curation of both DSSTox and Wikipedia. This work also allowed us to evaluate available data for sets of chemicals of interest to the Agency, such as synthetic cannabinoids, and expand the content in DSSTox as appropriate. This work also led to improved bidirectional linkage of the detailed chemistry and usage information from Wikipedia with expert-curated structure and identifier data from DSSTox for a new list of nearly 20,000 chemicals. All of this work ultimately enhances the data mappings that allow for the display of the introduction of the Wikipedia article in the community-accessible web-based EPA Comptox Chemicals Dashboard, enhancing the user experience for the thousands of users per day accessing the resource
    corecore