33 research outputs found

    Viral meningitis epidemics and a single, recent, recombinant and anthroponotic origin of swine vesicular disease virus

    Get PDF
    Background and objectives: Swine vesicular disease virus (SVDV) is a close relative of the human Enterovirus B serotype, coxsackievirus B5. As the etiological agent of a significant emergent veterinary disease, several studies have attempted to explain its origin. However, several key questions remain, including the full biological ancestry of the virus, and its geographical and temporal origin. Methodology: We sequenced near-complete genomes of 27 SVDV and 13 coxsackievirus B5 samples, all originally isolated between 1966 and 2006, and analysed these in conjunction with existing sequences and historical information. Results: While analyses incorporating 24 additional near-complete SVDV genomic sequences indicate clear signs of within-SVDV recombination, all 51 SVDV isolates remain monophyletic. This supports a hypothesis of a single anthroponotic transfer origin. Analysis of individual coding and non-coding regions supports that SVDV has a recombinant origin between coxsackievirus B5 and another Enterovirus B serotype, most likely coxsackievirus A9. Extensive Bayesian sequence-based analysis of the time of the most recent common ancestor of all analysed sequences places this within a few years around 1961. Epidemiological evidence points to China as an origin, but there are no available samples to test this conclusively. Conclusions and implications: Historical investigation and the clinical aspects of the involved Enterovirus B serotypes, makes the current results consistent with a hypothesis stating that SVDV originated through co-infection, recombination, and a single anthroponotic event, during large viral meningitis epidemics around 1960/1961 involving the ancestral serotypes. The exact geographical origin of SVDV may remain untestable due to historical aspects

    Palaeogenomic insights into the origins of French grapevine diversity

    Get PDF
    Ramos-Madrigal, Jazmín, Runge, Anne Kathrine Wiborg, Bouby, Laurent, Lacombe, Thierry, Castruita, José Alfredo Samaniego, Adam-Blondon, Anne-Françoise, Figueiral, Isabel, Hallavant, Charlotte, Martínez-Zapater, José M., Schaal, Caroline, Töpfer, Reinhard, Petersen, Bent, Sicheritz-Pontén, Thomas, This, Patrice, Bacilieri, Roberto, Gilbert, M. Thomas P., Wales, Nathan (2019): Palaeogenomic insights into the origins of French grapevine diversity. Nature Plants 5: 595-603, DOI: 10.1038/s41477-019-0437-

    Reconstructing genome evolution in historic samples of the Irish potato famine pathogen

    Get PDF
    Responsible for the Irish potato famine of 1845–49, the oomycete pathogen Phytophthora infestans caused persistent, devastating outbreaks of potato late blight across Europe in the 19th century. Despite continued interest in the history and spread of the pathogen, the genome of the famine-era strain remains entirely unknown. Here we characterize temporal genomic changes in introduced P. infestans. We shotgun sequence five 19th-century European strains from archival herbarium samples—including the oldest known European specimen, collected in 1845 from the first reported source of introduction. We then compare their genomes to those of extant isolates. We report multiple distinct genotypes in historical Europe and a suite of infection-related genes different from modern strains. At virulence-related loci, several now-ubiquitous genotypes were absent from the historical gene pool. At least one of these genotypes encodes a virulent phenotype in modern strains, which helps explain the 20th century’s episodic replacements of European P. infestans lineages

    Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia.

    Get PDF
    Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographic distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single late Pleistocene population. Both the geographic origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a dataset of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides an insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.L.L., K.D. and G.L. were supported by the Natural Environment Research Council, UK (grant numbers NE/K005243/1, NE/K003259/1); LL was also supported by the European Research Council grant (339941‐ADAPT); A.M. and A.E. were supported by the European Research Council Consolidator grant (grant number 647787‐LocalAdaptation); L.F. and G.L. were supported by the European Research Council grant (ERC‐2013‐StG 337574‐UNDEAD); T.G. was supported by a European Research Council Consolidator grant (681396‐Extinction Genomics) & Lundbeck Foundation grant (R52‐5062); O.T. was supported by the National Science Center, Poland (2015/19/P/NZ7/03971), with funding from EU's Horizon 2020 programme under the Marie Skłodowska‐Curie grant agreement (665778) and Synthesys Project (BETAF 3062); V.P., E.P. and P.N. were supported by the Russian Science Foundation grant (N16‐18‐10265 RNF); A.P. was supported by the Max Planck Society; M.L‐G. was supported by a Czech Science Foundation grant (GAČR15‐06446S)

    Dire wolves were the last of an ancient New World canid lineage

    Get PDF
    Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently
    corecore