1,711 research outputs found
Excitation of stellar p-modes by turbulent convection: 1. Theoretical formulation
Stochatic excitation of stellar oscillations by turbulent convection is
investigated and an expression for the power injected into the oscillations by
the turbulent convection of the outer layers is derived which takes into
account excitation through turbulent Reynolds stresses and turbulent entropy
fluctuations. This formulation generalizes results from previous works and is
built so as to enable investigations of various possible spatial and temporal
spectra of stellar turbulent convection. For the Reynolds stress contribution
and assuming the Kolmogorov spectrum we obtain a similar formulation than those
derived by previous authors. The entropy contribution to excitation is found to
originate from the advection of the Eulerian entropy fluctuations by the
turbulent velocity field. Numerical computations in the solar case in a
companion paper indicate that the entropy source term is dominant over Reynold
stress contribution to mode excitation, except at high frequencies.Comment: 14 pages, accepted for publication in A&
Excitation of non-radial stellar oscillations by gravitational waves: a first model
The excitation of solar and solar-like g modes in non-relativistic stars by
arbitrary external gravitational wave fields is studied starting from the full
field equations of general relativity. We develop a formalism that yields the
mean-square amplitudes and surface velocities of global normal modes excited in
such a way. The isotropic elastic sphere model of a star is adopted to
demonstrate this formalism and for calculative simplicity. It is shown that
gravitational waves solely couple to quadrupolar spheroidal eigenmodes and that
normal modes are only sensitive to the spherical component of the gravitational
waves having the same azimuthal order. The mean-square amplitudes in case of
stationary external gravitational waves are given by a simple expression, a
product of a factor depending on the resonant properties of the star and the
power spectral density of the gravitational waves' spherical accelerations.
Both mean-square amplitudes and surface velocities show a characteristic
R^8-dependence (effective R^2-dependence) on the radius of the star. This
finding increases the relevance of this excitation mechanism in case of stars
larger than the Sun.Comment: 8 pages, to be published in MNRAS (in press); corrected typo
Period spacings in red giants II. Automated measurement
The space missions CoRoT and Kepler have provided photometric data of
unprecedented quality for asteroseismology. A very rich oscillation pattern has
been discovered for red giants, including mixed modes that are used to decipher
the red giants interiors. They carry information on the radiative core of red
giant stars and bring strong constraints on stellar evolution. Since more than
15,000 red giant light curves have been observed by Kepler, we have developed a
simple and efficient method for automatically characterizing the mixed-mode
pattern and measuring the asymptotic period spacing. With the asymptotic
expansion of the mixed modes, we have revealed the regularity of the
gravity-mode pattern. The stretched periods were used to study the evenly space
periods with a Fourier analysis and to measure the gravity period spacing, even
when rotation severely complicates the oscillation spectra. We automatically
measured gravity period spacing for more than 6,100 Kepler red giants. The
results confirm and extend previous measurements made by semi-automated
methods. We also unveil the mass and metallicity dependence of the relation
between the frequency spacings and the period spacings for stars on the red
giant branch. The delivery of thousands of period spacings combined with all
other seismic and non-seismic information provides a new basis for detailed
ensemble asteroseismology.Comment: 13 pages, 13 figure
Stochastic excitation of non-radial modes I. High-angular-degree p modes
Turbulent motions in stellar convection zones generate acoustic energy, part
of which is then supplied to normal modes of the star. Their amplitudes result
from a balance between the efficiencies of excitation and damping processes in
the convection zones. We develop a formalism that provides the excitation rates
of non-radial global modes excited by turbulent convection. As a first
application, we estimate the impact of non-radial effects on excitation rates
and amplitudes of high-angular-degree modes which are observed on the Sun. A
model of stochastic excitation by turbulent convection has been developed to
compute the excitation rates, and it has been successfully applied to solar
radial modes (Samadi & Goupil 2001, Belkacem et al. 2006b). We generalize this
approach to the case of non-radial global modes. This enables us to estimate
the energy supplied to high-() acoustic modes. Qualitative arguments as
well as numerical calculations are used to illustrate the results. We find that
non-radial effects for modes are non-negligible:
- for high- modes (i.e. typically ) and for high values of ;
the power supplied to the oscillations depends on the mode inertia.
- for low- modes, independent of the value of , the excitation is
dominated by the non-diagonal components of the Reynolds stress term. We
carried out a numerical investigation of high- modes and we find that
the validity of the present formalism is limited to due to the
spatial separation of scale assumption. Thus, a model for very high-
-mode excitation rates calls for further theoretical developments, however
the formalism is valid for solar modes, which will be investigated in a
paper in preparation.Comment: 12 pages, accepted for publication in A&
Excitation of solar-like oscillations across the HR diagram
We extend semi-analytical computations of excitation rates for solar
oscillation modes to those of other solar-like oscillating stars to compare
them with recent observations. Numerical 3D simulations of surface convective
zones of several solar-type oscillating stars are used to characterize the
turbulent spectra as well as to constrain the convective velocities and
turbulent entropy fluctuations in the uppermost part of the convective zone of
such stars. These constraints, coupled with a theoretical model for stochastic
excitation, provide the rate 'P' at which energy is injected into the p-modes
by turbulent convection. These energy rates are compared with those derived
directly from the 3D simulations. The excitation rates obtained from the 3D
simulations are systematically lower than those computed from the
semi-analytical excitation model. We find that Pmax, the excitation rate
maximum, scales as (L/M)^s where s is the slope of the power law and L and M
are the mass and luminosity of the 1D stellar model built consistently with the
associated 3D simulation. The slope is found to depend significantly on the
adopted form of the eddy time-correlation ; using a Lorentzian form results in
s=2.6, whereas a Gaussian one gives s=3.1. Finally, values of Vmax, the maximum
in the mode velocity, are estimated from the computed power laws for Pmax and
we find that Vmax increases as (L/M)^sv. Comparisons with the currently
available ground-based observations show that the computations assuming a
Lorentzian eddy time-correlation yield a slope, sv, closer to the observed one
than the slope obtained when assuming a Gaussian. We show that the spatial
resolution of the 3D simulations must be high enough to obtain accurate
computed energy rates.Comment: 14 pages ; 7 figures ; accepted for publication in Astrophysics &
Astronom
Solar-like oscillation amplitudes and line-widths as a probe for turbulent convection in stars
Excitation of solar-like oscillations is attributed to turbulent convection
and takes place at the upper-most part of the outer convective zones.
Amplitudes of these oscillations depend on the efficiency of the excitation
processes as well as on the properties of turbulent convection. We present past
and recent improvements on the modeling of those processes. We show how the
mode amplitudes and mode line-widths can bring information about the turbulence
in the specific cases of the Sun and Alpha Cen A.Comment: 9 pages ; 3 figures ; invited talk given during the Symposium no. 239
"Convection in Astrophysics", International Astronomical Union., held 21-25
August, 2006 in Prague, Czech Republi
- …