5,668 research outputs found

    Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

    Get PDF
    XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply for the first time an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 years of X-ray pointed observations performed from different space missions. We estimate the dip arrival times using a statistical method that weights the count-rate inside the dip with respect to the level of the persistent emission outside the dip. We fit the obtained delays as a function of the orbital cycles both with a linear and a quadratic function. We infer the orbital ephemeris of XB 1254-690 improving the accuracy of the orbital period with respect to previous estimates. We infer a mass of M2=0.42±0.04_{2}=0.42\pm 0.04 M⊙_{\odot} for the donor star, in agreement with the estimations already present in literature, assuming that the star is in thermal equilibrium while it transfers part of its mass via the inner Lagrangian point, and assuming a neutron star mass of 1.4 M⊙_{\odot}. Using these assumptions, we also constrain the distance to the source, finding a value of 7.6±0.8\pm 0.8 kpc. Finally, we discuss the evolution of the system suggesting that it is compatible with a conservative mass transfer driven by magnetic braking.Comment: 13 pages, 5 figures, accepted for publication in Research in Astronomy and Astrophysics (RAA

    A possible solution of the puzzling variation of the orbital period of MXB 1659-298

    Get PDF
    MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of 2.31±0.022.31 \pm 0.02 yr is required. We infer a binary orbital period of P=7.1161099(3)P=7.1161099(3) hr and an orbital period derivative of P˙=−8.5(1.2)×10−12\dot{P}=-8.5(1.2) \times 10^{-12} s s−1^{-1}. We show that the large orbital period derivative can be explained with a highly non conservative mass transfer scenario in which more than 98\% of the mass provided by the companion star leaves the binary system. We predict an orbital period derivative value of P˙=−6(3)×10−12\dot{P}=-6(3) \times 10^{-12} s s−1^{-1} and constrain the companion star mass between ∼\sim0.3 and 0.9±0.3 0.9 \pm 0.3 M⊙_{\odot}. Assuming that the companion star is in thermal equilibrium the periodic modulation can be due to either a gravitational quadrupole coupling due to variations of the oblateness of the companion star or with the presence of a third body of mass M3>21_3 >21 Jovian masses.Comment: 10 pages, 6 figures. Accepted by MNRA

    A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

    Get PDF
    Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum has been observed by several instruments, and is therefore one of the best sources for this study. Methods: We use slightly different continuum and reflection models with respect to those adopted in literature for this source. In particular we fit the iron line and other reflection features with self-consistent reflection models as reflionx (with a power-law illuminating continuum modified with a high energy cutoff to mimic the shape of the incident Comptonization spectrum) and rfxconv. With these models we fit NuSTAR and XMM-Newton spectra yielding consistent spectral results. Results: Our results are in line with those already found by Miller et al. (2013) but less extreme. In particular, we find the inner disk radius at about 13 R_g and an inclination angle with respect to the line of sight of about 27 deg. We conclude that, while the choice of the reflection model has little impact on the disk parameters, as soon as a self-consistent model is used, the choice of the continuum model can be important in the precise determination of the disk parameters from the reflection component. Hence broad-band X-ray spectra are highly preferable to constrain the continuum and disk parameters.Comment: 13 pages including 8 figures. Accepted for publication in A&

    Evidence of a non-conservative mass transfer for XTE J0929-314

    Get PDF
    Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this system will result in an X-ray luminosity that is higher than the observed, long-term averaged X-ray luminosity. Methods. Under the hypothesis of a conservative mass transfer driven by gravitational radiation, as expected for this system given the short orbital period of about 43.6 min and the low mass of the companion implied by the mass function derived from timing techniques, we calculate the expected mass transfer rate in this system and predict the long-term averaged X-ray luminosity. This is compared with the averaged, over 15 years, X-ray flux observed from the system, and a lower limit of the distance to the source is inferred. Results. This distance is shown to be > 7.4 kpc in the direction of the Galactic anticentre, implying a large height, > 1.8 kpc, of the source with respect to the Galactic plane, placing the source in an empty region of the Galaxy. We suggest that the inferred value of the distance is unlikely. (abridged)Comment: 6 pages, 2 figures, accepted for publication in Astronomy & Astrophysics (A&A

    New orbital ephemerides for the dipping source 4U 1323-619: constraining the distance to the source

    Get PDF
    4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quadratic function. We locate 4U 1323-619 within a circular area centred at RA (J2000)= 201.6543\degree and DEC (J2000)= -62.1358\degree with an associated error of 0.0002\degree, and confirm the detection of the IR counterpart already discussed in literature. We estimate an orbital period of P=2.9419156(6) hrs compatible with the estimations that are present in the literature, but with an accuracy ten times higher. We also obtain a constraint on the orbital period derivative for the first time, estimating P˙=(8±13)×10−12\dot{P}=(8\pm 13)\times 10^{-12} s/s. Assuming that the companion star is in thermal equilibrium in the lower main sequence, and is a neutron star of 1.4 M⊙_{\odot}, we infer a mass of 0.28±\pm0.03 M⊙_{\odot} for the companion star. Assuming a distance of 10 kpc, we obtained a luminosity of (4.3±\pm0.5)×1036\times 10^{36} erg s−1^{-1}, which is not in agreement with what is predicted by the theory of secular evolution. Using a 3D extinction map of the Ks_{s} radiation in our Galaxy, we obtain a distance of 4.2−0.7+0.8^{+0.8}_{-0.7} kpc at 68\% confidence level. (Abridged)Comment: 10 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Study of the reflection spectrum of the LMXB 4U 1702-429

    Get PDF
    The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( ∼1037\sim10^{37} erg s−1^{-1}) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60∘^{\circ}.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A broad emission line at 6.7 keV and two absorption edges at 0.87 and 8.82 keV were detected. We found that a self-consistent reflection model fits the 0.3-60 keV spectrum well. The broadband continuum is composed of an emission component originating from the inner region of the accretion disc, a Comptonised direct emission coming from a corona with an electron temperature of 2.63±0.062.63 \pm 0.06 keV and an optical depth τ=13.6±0.2\tau=13.6 \pm 0.2, and, finally, a reflection component. The best-fit indicates that the broad emission line and the absorption edge at 8.82 keV, both associated with the presence of \ion{Fe}{xxv} ions, are produced by reflection in the region above the disc with a ionisation parameter of Log(ξ)≃2.7Log(\xi) \simeq 2.7. We have inferred that the inner radius, where the broad emission line originates, is 64−15+5264^{+52}_{-15} km, and the inner radius of the accretion disc is 39−8+639^{+6}_{-8} km. (Abridged)Comment: 9 pages, 9 figures, accepted for publication by A&

    Discovery of a soft X-ray 8 mHz QPO from the accreting millisecond pulsar IGR J00291+5934

    Get PDF
    In this paper, we report on the analysis of the peculiar X-ray variability displayed by the accreting millisecond X-ray pulsar IGR J00291+5934 in a 80 ks-long joint NuSTAR and XMM-Newton observation performed during the source outburst in 2015. The light curve of the source was characterized by a flaring-like behavior, with typical rise and decay time scales of ~120 s. The flares are accompanied by a remarkable spectral variability, with the X-ray emission being generally softer at the peak of the flares. A strong quasi periodic oscillation (QPO) is detected at ~8 mHz in the power spectrum of the source and clearly associated with the flaring-like behavior. This feature has the strongest power at soft X-rays (<3 keV). We carried out a dedicated hardness-ratio resolved spectral analysis and a QPO phase-resolved spectral analysis, together with an in-depth study of the source timing properties, to investigate the origin of this behavior. We suggest that the unusual variability of IGR J00291+5934 observed by XMM-Newton and NuSTAR could be produced by an heartbeat-like mechanism, similar to that operating in black-hole X-ray binaries. The possibility that this variability, and the associated QPO, are triggered by phases of quasi-stable nuclear burning, as suggested in the literature for a number of other neutron star binaries displaying a similar behavior, cannot be solidly tested in the case of IGR J00291+5934 due to the paucity of type-I X-ray bursts observed from this source.Comment: Submitted to MNRAS on 23 Sept 2016. Modified according to the referee's suggestions. Comments are welcomed. One reference updated in this versio

    Testing Rate Dependent corrections on timing mode EPIC-pn spectra of the accreting Neutron Star GX 13+1

    Get PDF
    When the EPIC-pn instrument on board XMM-Newton is operated in Timing mode, high count rates (>100 cts/s) of bright sources may affect the calibration of the energy scale, resulting in a modification of the real spectral shape. The corrections related to this effect are then strongly important in the study of the spectral properties. Tests of these calibrations are more suitable in sources which spectra are characterised by a large number of discrete features. Therefore, in this work, we carried out a spectral analysis of the accreting Neutron Star GX 13+1, which is a dipping source with several narrow absorption lines and a broad emission line in its spectrum. We tested two different correction approaches on an XMM-Newton EPIC-pn observation taken in Timing mode: the standard Rate Dependent CTI (RDCTI or epfast) and the new, Rate Dependent Pulse Height Amplitude (RDPHA) corrections. We found that, in general, the two corrections marginally affect the properties of the overall broadband continuum, while hints of differences in the broad emission line spectral shape are seen. On the other hand, they are dramatically important for the centroid energy of the absorption lines. In particular, the RDPHA corrections provide a better estimate of the spectral properties of these features than the RDCTI corrections. Indeed the discrete features observed in the data, applying the former method, are physically more consistent with those already found in other Chandra and XMM-Newton observations of GX 13+1.Comment: Accepted for publication in MNRAS; 10 pages, 8 figure

    Signature of the presence of a third body orbiting around XB 1916-053

    Get PDF
    The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M⊙_{\odot}). The orbital period derivative of the source was estimated to be 1.5(3)×10−111.5(3) \times 10^{-11} s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadratic term or a different scenario has to be considered. We obtained 27 delays associated with the dip arrival times from data covering 37 years and used different models to fit the time delays with respect to a constant period model.We find that the quadratic form alone does not fit the data. The data are well fitted using a sinusoidal term plus a quadratic function or, alternatively, with a series of sinusoidal terms that can be associated with a modulation of the dip arrival times due to the presence of a third body that has an elliptical orbit. We infer that for a conservative mass transfer scenario the modulation of the delays can be explained by invoking the presence of a third body with mass between 0.10-0.14 M⊙_{\odot}, orbital period around the X-ray binary system of close to 51 yr and an eccentricity of 0.28±0.150.28 \pm 0.15. In a non-conservative mass transfer scenario we estimate that the fraction of matter yielded by the degenerate companion star and accreted onto the neutron star is β=0.08\beta = 0.08, the neutron star mass is ≥2.2\ge 2.2 M⊙_{\odot}, and the companion star mass is 0.028 M⊙_{\odot}. (Abridged)Comment: 13 pages, 9 figures. Accepted for publication in A&
    • …
    corecore